《天津市天津八中2023年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《天津市天津八中2023年中考猜题数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1如图的立体图形,从左面看可能是()ABCD2如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD3下列运算正确的是( )A(a2)3 =a5BC(3ab)2=6a2b2Da6a3 =a24如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以
3、堵住矩形空洞的是( )A正方体B球C圆锥D圆柱体5如图所示,在ABC中,C=90,AC=4,BC=3,将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )A2BCD6如图直线ymx与双曲线y=交于点A、B,过A作AMx轴于M点,连接BM,若SAMB2,则k的值是()A1B2C3D47在,这四个数中,比小的数有( )个ABCD8如图是由4个相同的正方体搭成的几何体,则其俯视图是( )ABCD9如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A7B8C9D1010把不等式组的解集表示在数轴上,下列选项正确的是()
4、ABCD11如图,在菱形ABCD中,E是AC的中点,EFCB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A24B18C12D912如图,AD是O的弦,过点O作AD的垂线,垂足为点C,交O于点F,过点A作O的切线,交OF的延长线于点E若CO=1,AD=2,则图中阴影部分的面积为A4-B2-C4-D2-二、填空题:(本大题共6个小题,每小题4分,共24分)13二次根式中,x的取值范围是 14如果把抛物线y=2x21向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_15分解因式: _.16如图所示,在菱形ABCD中,AB=4,BAD=120,AEF为正三角形,点E、F分别
5、在菱形的边BC、CD上滑动,且E、F不与B、C、D重合当点E、F在BC、CD上滑动时,则CEF的面积最大值是_17有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是_18如图,在ABC中,CABC,BEAC,垂足为点E,BDE是等边三角形,若AD4,则线段BE的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元在该产品的试销期间,为了促销,鼓励商家购买该新型品,公
6、司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)20(6分)已知关于x
7、的一元二次方程x2mx20若x1是方程的一个根,求m的值和方程的另一根;对于任意实数m,判断方程的根的情况,并说明理由21(6分)某公司为了扩大经营,决定购进6台机器用于生产某活塞现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060 (1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?22(8分)先化简,再求值:,其中x=,y=23(8分)已知关于x的一元二次方程3x26x+1k=0有实数根
8、,k为负整数求k的值;如果这个方程有两个整数根,求出它的根24(10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距 千米,慢车速度为 千米/小时(2)求快车速度是多少?(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式(4)直接写出两车相距300千米时的x值25(10分)解方程组.26(12分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整(1)按如下分数段整理、描述这两组数据:成绩x学生7
9、0x7475x7980x8485x8990x9495x100甲_乙114211(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲_83.7_8613.21乙2483.782_46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选_(填“甲”或“乙),理由为_27(12分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n(n为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端
10、点A,B),线段总数为30,求m的值”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.2、C【解析】根据图象起始位置猜想点B或F为起点,则可以判断正确,错误结合图象判断3t4图象的对称性可以判断正确结合图象易得正确【详解】解:由图象可知,机器人距离点
11、A1个单位长度,可能在F或B点,则正六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故正确;所有点中,只有点D到A距离为2个单位,故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势3、B【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.解析: ,故A选项错误; a3a = a4故B选项正确;(3ab)2 = 9a2b2故C选项错误; a6a3 = a3
12、故D选项错误.故选B.4、D【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞【详解】根据三视图的知识来解答圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项故选D【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难5、C【解析】解:连接BD在ABC中,C=90,AC=4,BC=3,AB=2将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=4,DE=3,BE=2在RtBED中,BD=故选C点睛:
13、本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系题目整体较为简单,适合随堂训练6、B【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由SABM=1SAOM并结合反比例函数系数k的几何意义得到k的值【详解】根据双曲线的对称性可得:OA=OB,则SABM1SAOM1,SAOM|k|1,则k1又由于反比例函数图象位于一三象限,k0,所以k1故选B【点睛】本题主要考查了反比例函数y中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点7、B【解析】比较这些负数的绝对值,绝对值大的反而小.【
14、详解】在4、1、这四个数中,比2小的数是是4和.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.8、A【解析】试题分析:从上面看是一行3个正方形故选A考点:三视图9、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选C【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.10、C【解析】求得不等式组的解集为x1,所以C是正确的【详解】解:不等式组的解集为x1故选C【点睛】本题考查了不等式
15、问题,在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示11、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解【详解】E是AC中点,EFBC,交AB于点F,EF是ABC的中位线,BC=2EF=23=6,菱形ABCD的周长是46=24,故选A【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.12、B【解析】由S阴影=SOAE-S扇形OAF,分别求出SOAE、S扇形OAF即可;【详解】连接OA,ODOFAD,AC=CD=,在RtOAC中,由tanAOC=知,AOC=60,则DOA=120,OA=2,RtOAE中,A
16、OE=60,OA=2AE=2,S阴影=SOAE-S扇形OAF=22-.故选B.【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须14、y=2(x+1)2+1【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入
17、得:y=2(x+1)2+115、【解析】先提取公因式b,再利用完全平方公式进行二次分解解答:解:a1b-1ab+b,=b(a1-1a+1),(提取公因式)=b(a-1)1(完全平方公式)16、 【解析】解:如图,连接AC,四边形ABCD为菱形,BAD=120,1+EAC=60,3+EAC=60,1=3,BAD=120,ABC=60,ABC和ACD为等边三角形,4=60,AC=AB在ABE和ACF中,1=3,AC=AC,ABC=4,ABEACF(ASA),SABE=SACF,S四边形AECF=SAEC+SACF=SAEC+SABE=SABC,是定值,作AHBC于H点,则BH=2,S四边形AECF
18、=SABC=BCAH=BC=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又SCEF=S四边形AECFSAEF,则此时CEF的面积就会最大,SCEF=S四边形AECFSAEF= =故答案为:.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据ABEACF,得出四边形AECF的面积是定值是解题的关键17、【解析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率【详解】解:列表如下:567895(6、5)(7、5)(8、5)(9、5)6(
19、5、6)(7、6)(8、6)(9、6)7(5、7)(6、7)(8、7)(9、7)8(5、8)(6、8)(7、8)(9、8)9(5、9)(6、9)(7、9)(8、9)所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)= 故答案为.【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比18、1【解析】本题首先由等边三角形的性质及垂直定义得到DBE=60,BEC=90,再根据等腰三角形的性质可以得出EBC=ABC-60=C-60,最后根据三角形内角和定理得出关系式C-60+C=90解出C,推出AD=DE,于是得到结论【详解】BDE是正三角形,DBE=
20、60;在ABC中,C=ABC,BEAC,C=ABC=ABE+EBC,则EBC=ABC-60=C-60,BEC=90;EBC+C=90,即C-60+C=90,解得C=75,ABC=75,A=30,AED=90-DEB=30,A=AED,DE=AD=1,BE=DE=1,故答案为:1【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0x10时,y700x,当10x1
21、时,y5x2+750x,当x1时,y300x;(3)公司应将最低销售单价调整为2875元【解析】(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)件数,及销售单价均不低于2800元,按0x10,10x50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价【详解】(1)设商家一次购买这种产品x件时,销售单价恰好为2800元由题意得:32005(x10)2800,解得:x1答:商家一次购买这种产品1件时,销售单价恰好为2800元;(2)设商家
22、一次购买这种产品x件,开发公司所获的利润为y元,由题意得:当0x10时,y(32002500)x700x,当10x1时,y32005(x10)2500x5x2+750x,当x1时,y(28002500)x300x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y700x,y300x均是y随x增大而增大,而y5x2+750x5(x75)2+28125,在10x75时,y随x增大而增大由上述分析得x的取值范围为:10x75时,即一次购买75件时,恰好是最低价,最低价为32005(7510)2875元,答:公司应将最低销售单价调整为2875元【点睛】本题考查了一次、二次函
23、数的性质在实际生活中的应用最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案20、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式与1的关系进行判断(1)把x=-1代入得1+m-2=1,解得m=12-2=1另一根是2;(2),方程有两个不相等的实数根考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与
24、判别式的关系:当1,方程有两个不相等的实数根;当=1,方程有两个相等的实数根;当1,方程没有实数根21、(1)有3种购买方案购乙6台,购甲1台,购乙5台,购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数34万元就可以得到关于x的不等式,就可以求出x的范围(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数380件根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出
25、合适的方案【详解】解:(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)34解这个不等式,得x2,即x可取0,1,2三个值.该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)380解之得x 由(1)得x2,即x2.x可取1,2俩值.即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为17+55=32万元;购买甲种机器2台,购买乙种机器4台,所耗资金为27+45=34万元. 为了节约资金应
26、选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案22、x+y,【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题试题解析:原式= =x+y,当x=,y=2时,原式=2+2=23、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k
27、为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法24、(1)10, 1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x10;(4)当x=2小时或x=4小时时,两车相距300千米【解析】(1)由当x=0时y=10可得出甲乙两地间距,再利用速度=两地间距慢车行驶
28、的时间,即可求出慢车的速度;(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;(4)利用待定系数法求出当0x4时y与x之间的函数关系式,将y=300分别代入0x4时及4x时的函数关系式中求出x值,此题得解【详解】解:(1)当x=0时,y=10,甲乙两地相距10千米1010=1(千米/小时)故答案为10;1(2)设快车的速度为a千米/小时,根据题意得:4(1+a)=10,解得:a=2答:快车速度是2千米/小
29、时(3)快车到达甲地的时间为102=(小时),当x=时,两车之间的距离为1=400(千米)设当4x时,y与x之间的函数关系式为y=kx+b(k0),该函数图象经过点(4,0)和(,400),解得:,从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x10(4)设当0x4时,y与x之间的函数关系式为y=mx+n(m0),该函数图象经过点(0,10)和(4,0),解得:,y与x之间的函数关系式为y=150x+10当y=300时,有150x+10=300或150x10=300,解得:x=2或x=4当x=2小时或x=4小时时,两车相距300千米【点睛】本题考查了待定系数法求一次函数解析式、一
30、元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和相遇时间,列出关于a的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y=300时x的值25、或【解析】把y=x代入,解得x的值,然后即可求出y的值;【详解】把(1)代入(2)得:x2+x20,(x+2)(x1)0,解得:x2或1,当x2时,y2,当x1时,y1,原方程组的解是或【点睛】本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数26、(1)0,1,4,
31、5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】(1)根据折线统计图数字进行填表即可; (2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,70x74无,共0个;75x79之间有75,共1个;80x84之间有84,82,1,83,共4个;85x89之间有89,86,86,85,86,共5个;90x94之间和95x100无,共0个故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分
32、为75分,极差为8975=14分;甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,中位数为(8485)84.5;乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小或:乙,理由:在90x100的分数段中,乙的次数大于甲(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定【点睛】此题考查折线统计图,统计表,平均数,中
33、位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据27、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.【解析】探究:(1)根据握手次数=参会人数(参会人数-1)2,即可求出结论;(2)由(1)的结论结合参会人数为n,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对【详解】探究:(1)3(3-1)2=3,5(5-1)2=1故答案为3;1(2)参加聚会的人数为n(n为正整数),每人需跟(n-1)人握手,握手总数为故答案为(3)依题意,得:=28,整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去)答:参加聚会的人数为8人拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:=2,整理,得:m2-m-60=0,解得m1=,m2=(舍去)m为正整数,没有符合题意的解,线段总数不可能为2【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程
限制150内