四川省宜宾县一中2023年高三第三次模拟考试数学试卷含解析.doc
《四川省宜宾县一中2023年高三第三次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省宜宾县一中2023年高三第三次模拟考试数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知随机变量服从正态分布,( )ABCD2易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,
2、五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( ) ABCD3已知函数,当时,恒成立,则的取值范围为( )ABCD4如图,内接于圆,是圆的直径,则三棱锥体积的最大值为( )ABCD5聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,则按照以上规律,若具有“穿墙术”,则( )A48B63C99D1206在正方体中,分别为,的中点,则异面直线,所成角的余弦值为( )ABCD7已知等差数列的前n项和为,且,若(,且),则i的取值集合是
3、( )ABCD8已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是( )ABCD9已知,则不等式的解集是( )ABCD10下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A1B2C3D411已知集合,则( )ABCD12若复数,则( )ABCD20二、填空题:本题共4小题,每小题5分,共20分。13已知数列的各项均为正数,满足,若是等比数列,数列的通项公式_14某高校组织学生辩论赛,六位评委为选手成绩打出分数的茎叶图如图所示,若去掉一个最高分,去
4、掉一个最低分,则所剩数据的平均数与中位数的差为_.15定义在R上的函数满足:对任意的,都有;当时,则函数的解析式可以是_.16二项式的展开式的各项系数之和为_,含项的系数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆:的左、右焦点分别为,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.(1)求椭圆的方程;(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.18(12分)在中,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60,连接,如图:(1)证明:平面平面(2)求平面与平面所
5、成二面角的大小.19(12分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均体育锻炼时间在的学生评价为“锻炼达标”(1)请根据上述表格中的统计数据填写下面列联表:并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关?(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出人,进行体育锻炼体会交流(i)求这人中,男生、女生各有多少人?(ii)从参加体会交流的人中,随机选出人发言,记这人中女生的人数为,求的分布列和数学期望参考公式:,其中临界值表:0.100.050.0250.01
6、002.7063.8415.0246.63520(12分)已知为椭圆的左、右焦点,离心率为,点在椭圆上.(1)求椭圆的方程;(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.21(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x2|m)(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)2的解集是R,求m的取值范围22(10分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,
7、共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故选:B.【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.2、C【解析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况
8、数较多时,可考虑用排列数、组合数去计算.3、A【解析】分析可得,显然在上恒成立,只需讨论时的情况即可,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【点睛】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.4、B【解析】根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值【详解】因为,所以四边形为平行四边形.又因
9、为平面,平面,所以平面,所以平面.在直角三角形中,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B【点睛】本题考查求棱锥体积的最大值解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值5、C【解析】观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.6、D【解析】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中
10、,求出,在利用二倍角公式,求出,即可得出答案.【详解】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,在等腰中,取的中点为,连接,则,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.7、C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,解得,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.8、A【解析】由题可得出的坐标为,再利用点对称的性质,即可求出和.【详解】根据题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 宜宾县 一中 2023 年高 第三次 模拟考试 数学试卷 解析
限制150内