四川省德阳市什邡中学2023年高三第四次模拟考试数学试卷含解析.doc
《四川省德阳市什邡中学2023年高三第四次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省德阳市什邡中学2023年高三第四次模拟考试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和
2、2019年的高考情况,得到如图柱状图: 则下列结论正确的是( ).A与2016年相比,2019年不上线的人数有所增加B与2016年相比,2019年一本达线人数减少C与2016年相比,2019年二本达线人数增加了0.3倍D2016年与2019年艺体达线人数相同2若函数的图象过点,则它的一条对称轴方程可能是( )ABCD3函数的定义域为( )ABCD4已知向量,夹角为, ,则( )A2B4CD5 下列与的终边相同的角的表达式中正确的是()A2k45(kZ)Bk360(kZ)Ck360315(kZ)Dk (kZ)6函数的图象可能是下列哪一个?( )ABCD7已知椭圆:的左,右焦点分别为,过的直线交椭
3、圆于,两点,若,且的三边长,成等差数列,则的离心率为( )ABCD8已知函数,若函数在上有3个零点,则实数的取值范围为( )ABCD9函数的一个零点在区间内,则实数a的取值范围是( )ABCD10平行四边形中,已知,点、分别满足,且,则向量在上的投影为( )A2BCD11已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则( )A3BCD12函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为_.14已知数列满足,若,则数列的前n项和_
4、15已知等比数列满足公比,为其前项和,构成等差数列,则_16设全集,集合,则集合_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.18(12分)设函数 .(I)求的最小正周期;(II)若且,求的值.19(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值20(12分)已知是等腰直角三角形,分别
5、为的中点,沿将折起,得到如图所示的四棱锥()求证:平面平面()当三棱锥的体积取最大值时,求平面与平面所成角的正弦值21(12分)已知函数.(1)若函数,求的极值;(2)证明:. (参考数据: )22(10分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为
6、,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.2、B【解析】把已知点坐标代入求出,然后验证各选项【详解】由题意,或,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,即是对称轴故选:B【点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键3、C【解析】函数的定义域应满足 故选C
7、.4、A【解析】根据模长计算公式和数量积运算,即可容易求得结果.【详解】由于,故选:A.【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.5、C【解析】利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2k (kZ),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.6、A【解析】由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果.【详解】由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.【
8、点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.7、C【解析】根据等差数列的性质设出,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,成等差数列,设,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,离心率.故选:C【点睛】本小题主要考查椭圆离心
9、率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.8、B【解析】根据分段函数,分当,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,令,在是增函数,时,有一个零点,当时,令当时,在上单调递增,当时,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为, 故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.9、C【解析】显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 德阳市 什邡 中学 2023 年高 第四 模拟考试 数学试卷 解析
限制150内