四川省成都市重点中学2023年高考压轴卷数学试卷含解析.doc
《四川省成都市重点中学2023年高考压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都市重点中学2023年高考压轴卷数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1命题“”的否定为( )ABCD2关于函数在区间的单调性,下列叙述正确的是( )A单调递增B单调递减C先递减后递增D先递增后递减3为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县
2、至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( )A24B36C48D644下列函数中,在区间上单调递减的是( )ABC D5的图象如图所示,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是( )ABCD6设复数满足,则( )ABCD7已知平面和直线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则8执行如图所示的程序框图,则输出的值为( )ABCD9已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是( )ABCD10设集合,若,则( )ABCD11双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点
3、,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为( )ABCD12已知为等差数列,若,则( )A1B2C3D6二、填空题:本题共4小题,每小题5分,共20分。13已知实数,满足,则目标函数的最小值为_14设是等比数列的前项的和,成等差数列,则的值为_15已知复数,其中为虚数单位,则的模为_.16我国古代数学名著九章算术对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(
4、12分)在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为4sin(+).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于M,N两点,求MON的面积.18(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.19(12分)已知函数,其中为自然对数的底数,(1)若曲线在点处的切线与直线平行,求的值;(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说
5、明理由20(12分)在,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且, ,(1)求数列的通项公式;(2)设,求数列的前项和.21(12分)已知函数,其中()当时,求函数的单调区间;()设,求证:;()若对于恒成立,求的最大值22(10分)已知数列的前n项和,是等差数列,且.()求数列的通项公式;()令.求数列的前n项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:
6、C【点睛】本题考查全称命题的否定,属于基础题.2、C【解析】先用诱导公式得,再根据函数图像平移的方法求解即可.【详解】函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增.故选:C【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.3、B【解析】根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.4、C【解析】由每个函数的单调区间,即可得到本题答案.【详解】因为函数和在递增
7、,而在递减.故选:C【点睛】本题主要考查常见简单函数的单调区间,属基础题.5、B【解析】根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果.【详解】由图象可得,函数的最小正周期为,则,取,则,可得,当时,.故选:B.【点睛】本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.6、D【解析】根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.7、C【解析】根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足
8、,b,故本命题不正确;B:当时,也可以满足,故本命题不正确;C:根据平行线的性质可知:当,时,能得到,故本命题是正确的;D:当时,也可以满足,b,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.8、B【解析】列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.9、A【解析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求
9、得直线关于直线的对称直线为,当时,当时,则当时,单减,当时,单增;当时,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题10、A【解析】根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.11、D【解析】根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 成都市 重点中学 2023 年高 压轴 数学试卷 解析
限制150内