四川省普通高中2023届高三考前热身数学试卷含解析.doc
《四川省普通高中2023届高三考前热身数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省普通高中2023届高三考前热身数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则的子集共有( )A个B个C个D个2已知实数,函数在上单调递增,则实数的取值范围是( )ABCD3已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D54若函数
2、的图象过点,则它的一条对称轴方程可能是( )ABCD5如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为( )A2B3C4D56已知奇函数是上的减函数,若满足不等式组,则的最小值为( )A-4B-2C0D47设双曲线(a0,b0)的一个焦点为F(c,0)(c0),且离心率等于,若该双曲线的一条渐近线被圆x2+y22cx0截得的弦长为2,则该双曲线的标准方程为( )ABCD8九章算术勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物
3、,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )ABCD9已知函数,若,则的取值范围是( )ABCD10已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为( )ABCD11在平行四边形中,若则( )ABCD12已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为( )AB3C2D二、填空题:本题共4小题,每小题5分,共20分。13如图所示梯子结构的点数依次构成数列,则_.14已知,椭圆
4、的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为_.15如图,在ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为_16如图,、分别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,则双曲线的离心率是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系x0y中,把曲线为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.18(12分
5、)已知不等式对于任意的恒成立.(1)求实数m的取值范围;(2)若m的最大值为M,且正实数a,b,c满足.求证.19(12分)如图,在三棱柱中, 平面ABC.(1)证明:平面平面(2)求二面角的余弦值.20(12分)如图,直三棱柱中,底面为等腰直角三角形,分别为,的中点,为棱上一点,若平面.(1)求线段的长;(2)求二面角的余弦值.21(12分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.22(10分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,
6、只有一项是符合题目要求的。1、B【解析】根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.2、D【解析】根据题意,对于函数分2段分析:当,由指数函数的性质分析可得,当,由导数与函数单调性的关系可得,在上恒成立,变形可得,再结合函数的单调性,分析可得,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,当,若为增函数,则,当,若
7、为增函数,必有在上恒成立,变形可得:,又由,可得在上单调递减,则,若在上恒成立,则有,若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,联立可得:.故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.3、D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于
8、到准线的距离,这条性质在解题时经常用到,可以简化运算.4、B【解析】把已知点坐标代入求出,然后验证各选项【详解】由题意,或,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,即是对称轴故选:B【点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键5、A【解析】根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力
9、,属于基础题.6、B【解析】根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.7、C【解析】由题得,又,联立解方程组即可得,进而得出双曲线方程.【详解】由题得 又该双曲线的一条渐近线方程为,且被圆x2+y22cx0截得的弦长为2,所以 又 由可得:,所以双曲线的标准方程为.故选:C【点睛】本题主要考查了双曲线的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 普通高中 2023 届高三 考前 热身 数学试卷 解析
限制150内