四川成都青羊区外国语学校2023届高三第二次联考数学试卷含解析.doc
《四川成都青羊区外国语学校2023届高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川成都青羊区外国语学校2023届高三第二次联考数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设是虚数单位,则( )ABC1D22对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是( )A或BC或D3如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动, 且总是平行于轴, 则的周长的取值范围是( )
2、ABCD4已知椭圆:的左,右焦点分别为,过的直线交椭圆于,两点,若,且的三边长,成等差数列,则的离心率为( )ABCD5若复数满足,则(其中为虚数单位)的最大值为( )A1B2C3D46若,则“”的一个充分不必要条件是ABC且D或7已知(i为虚数单位,),则ab等于( )A2B-2CD8ABC中,AB3,AC4,则ABC的面积是( )ABC3D9若集合,则( )ABCD10已知集合,则()ABCD11若复数是纯虚数,则实数的值为( )A或BCD或12计算等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是_14已知向量,若
3、,则实数_.15若奇函数满足,为R上的单调函数,对任意实数都有,当时,则_.16已知四棱锥,底面四边形为正方形,四棱锥的体积为,在该四棱锥内放置一球,则球体积的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆:的离心率为,右焦点为抛物线的焦点.(1)求椭圆的标准方程;(2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值.18(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.19(12分)
4、管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.20(12分)已知,函数.(1)若函数在上为减函数,求实数的取值范围;(2)求证:对上的任意两个实数,总有成立.21(12分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.22(10分)已知
5、函数当时,求不等式的解集;,求a的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:, ,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.2、C【解析】根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.【详解】由得,.令,则,令,解得,所以当时,则在内单调递增;当时,则在内单调递减;所以在处取得极大值,即最大值为,则的图
6、象如下图所示:由有且仅有一个不动点,可得得或,解得或.故选:C【点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.3、B【解析】根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【点睛】本题考查了抛物线定义、方
7、程及几何性质的简单应用,圆的几何性质应用,属于中档题.4、C【解析】根据等差数列的性质设出,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,成等差数列,设,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,离心率.故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.5、B【解析】根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复
8、数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【点睛】本题考查了复数模的定义及其几何意义应用,属于基础题.6、C【解析】,当且仅当 时取等号.故“且 ”是“”的充分不必要条件.选C7、A【解析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解【详解】,得,故选:【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题8、A【解析】由余弦定理求出角,再由三角形面积公式计算即可.【详解】由余弦定理得:,又,所以得,故ABC的面积.故选:A【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川成都 区外 国语 学校 2023 届高三 第二次 联考 数学试卷 解析
限制150内