四川省遂宁市高中2022-2023学年高考数学五模试卷含解析.doc
《四川省遂宁市高中2022-2023学年高考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省遂宁市高中2022-2023学年高考数学五模试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,满足条件(为常数),若目标函数的最大值为9,则( )ABCD2将函数图象上所有点向左平移个单位长度后得到函数的图象,
2、如果在区间上单调递减,那么实数的最大值为( )ABCD3是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱锥的体积为( )ABCD4若复数满足,其中为虚数单位,是的共轭复数,则复数( )ABC4D55中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B从2014年到2018年这5年,
3、高铁运营里程与年价正相关C2018年高铁运营里程比2014年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列6已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )ABC3D47若,则函数在区间内单调递增的概率是( )A B C D8已知平面向量满足,且,则所夹的锐角为( )ABCD09已知实数,满足,则的最大值等于( )A2BC4D810已知向量,且,则( )ABC1D211若函数的图象如图所示,则的解析式可能是( )ABCD12已知直线过圆的圆心,则的最小值为( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13某公园划
4、船收费标准如表:某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为_元,租船的总费用共有_种可能.14记Sk1k+2k+3k+nk,当k1,2,3,时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,S5An6n5n4+Bn2,可以推测,AB_15若,则=_, = _.16函数的图像如图所示,则该函数的最小正周期为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知an是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1(I)求an的通项公式;()若数列bn满足:,求bn的前n项和18(12分)
5、已知ABC的内角A,B,C的对边分别为a,b,c,若c2a,bsinBasinAasinC()求sinB的值;()求sin(2B+)的值19(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.20(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线
6、OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.21(12分)在三棱柱中,且.(1)求证:平面平面;(2)设二面角的大小为,求的值.22(10分)选修4-5:不等式选讲已知函数的最大值为3,其中(1)求的值;(2)若,求证:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由目标函数的最大值为9,我们可以画出满足条件 件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得
7、直线与直线的交点,使目标函数取得最大值,将,代入得:故选:【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值2、B【解析】根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.3、D【解析】首先由题意得,当梯形的外接圆圆心为四
8、棱锥的外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【详解】如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,即为直角三角形.对于等腰梯形,如图:因为是等边三角形,、分别为、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,所以四棱锥底面的高为,.故选:D.【点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个
9、是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.4、D【解析】根据复数的四则运算法则先求出复数z,再计算它的模长【详解】解:复数za+bi,a、bR;2z,2(a+bi)(abi),即,解得a3,b4,z3+4i,|z|故选D【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题5、D【解析】由折线图逐项分析即可求解【详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题6、A【解析】根据题意,由抛物线的方程可得其焦点坐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 遂宁市 高中 2022 2023 学年 高考 数学 试卷 解析
限制150内