《四川省乐山四中学2023年中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省乐山四中学2023年中考数学五模试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()ABCD2已知是二元一次方程组的解,
2、则m+3n的值是( )A4B6C7D83多项式4aa3分解因式的结果是()Aa(4a2) Ba(2a)(2+a) Ca(a2)(a+2) Da(2a)24一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确5下列图形中,既是中心对称图形又是轴对称图形的是()A正五边形 B平行四边形 C矩形 D等边三角形6如图是婴儿车
3、的平面示意图,其中ABCD,1=120,3=40,那么2的度数为( )A80B90C100D1027关于x的不等式组的所有整数解是()A0,1B1,0,1C0,1,2D2,0,1,28在平面直角坐标系中,将点 P (4,2)绕原点O 顺时针旋转 90,则其对应点Q 的坐标为( )A(2,4)B(2,4)C(2,4)D(2,4)9如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是ABCD10一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A2B3C5D711已知x1,x2是关于x的方程x2ax2b0的两个实数根,且x1x22,x1x21,则ba的值是( )AB
4、C4D112如图,CE,BF分别是ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )A6B5C4D3二、填空题:(本大题共6个小题,每小题4分,共24分)13将2.05103用小数表示为_14因式分解:3x23x=_15如图,D,E分别是ABC的边AB、BC上的点,且DEAC,AE、CD相交于点O,若SDOE:SCOA=1:16,则SBDE与SCDE的比是_16有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴
5、对称图形的概率为_17阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=1,那么(1+i)(1i)的平方根是_18甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平行四边形ABCD中,过点A作AEDC,垂足为点E,连接BE,点F为BE上一点,连接AF,AFE=D(1)求证:BAF=CBE;(2)若AD=5,AB=8,sinD=求证:AF=BF20(6分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F(1)求证:四边形BEDF是平
6、行四边形;(2)请添加一个条件使四边形BEDF为菱形21(6分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.22(8分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(4,n)两点分别求
7、出一次函数与反比例函数的表达式;过点B作BCx轴,垂足为点C,连接AC,求ACB的面积23(8分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上即如图,若PAPB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图,直线CD是等边ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,ABE经顺时针旋转后与BCF重合(I)旋转中心是点 ,旋转了 (度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图中将图形补全,并探究APC的大小是否保持不变?若不变,请求出APC的度数;
8、若改变,请说出变化情况24(10分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元)。销售部规定:当x16时,为“不称职”,当 时为“基本称职”,当 时为“称职”,当 时为“优秀”.根据以上信息,解答下列问题: 补全折线统计图和扇形统计图; 求所有“称职”和“优秀”的销售员销售额的中位数和众数; 为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.25(1
9、0分)如图1,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan,即ctan,根据上述角的余切定义,解下列问题:(1)如图1,若BC3,AB5,则ctanB_;(2)ctan60_;(3)如图2,已知:ABC中,B是锐角,ctan C2,AB10,BC20,试求B的余弦cosB的值26(12分)如图,已知抛物线yx24与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线yx+m经过点A,与y轴交于点D求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,求新抛物线对应的函数表
10、达式27(12分)如图,AB为O的直径,D为O上一点,以AD为斜边作ADC,使C=90,CAD=DAB求证:DC是O的切线;若AB=9,AD=6,求DC的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】解:设动车速度为每小时x千米,则可列方程为:=故选D2、D【解析】分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.详解:根据题意,将代入,得:,+,得:m+3n=8,故选D点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题
11、型.3、B【解析】首先提取公因式a,再利用平方差公式分解因式得出答案【详解】4aa3=a(4a2)=a(2a)(2+a)故选:B【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键4、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G
12、2有公共点时,y1随x增大而减小;故正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大5、C【解析】分析:根据中心对称图
13、形和轴对称图形对各选项分析判断即可得解详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.6、A【解析】分析:根据平行线性质求出A,根据三角形内角和定理得出2=1801A,代入求出即可详解:ABCD.A=3=40,1=60,2=1801A=80
14、,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180.7、B【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案【详解】解不等式2x4,得:x2,解不等式3x51,得:x2,则不等式组的解集为2x2,所以不等式组的整数解为1、0、1,故选:B【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8、A【解析】首先求出MPO=QON,利用AAS证明PMOONQ,即可得到PM
15、=ON,OM=QN,进而求出Q点坐标【详解】作图如下,MPO+POM=90,QON+POM=90,MPO=QON,在PMO和ONQ中, ,PMOONQ,PM=ON,OM=QN,P点坐标为(4,2),Q点坐标为(2,4),故选A【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等9、D【解析】本题主要考查二次函数的解析式【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.故选D.【点睛】本题主要考查二
16、次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.10、C【解析】分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据根据定义即可求出答案详解:众数为5, x=5, 这组数据为:2,3,3,5,5,5,7, 中位数为5, 故选C点睛:本题主要考查的是众数和中位数的定义,属于基础题型理解他们的定义是解题的关键11、A【解析】根据根与系数的关系和已知x1+x2和x1x2的值,可求a、b的值,再代入求值即可【详解】解:x1,x2是关于x的方程x2+ax2b=0的两实数根,x1+x2
17、=a=2,x1x2=2b=1,解得a=2,b=,ba=()2=故选A12、C【解析】连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EGFGBC,因为D是EF中点,根据等腰三角形三线合一的性质可得GDEF,再根据勾股定理即可得出答案【详解】解:连接EG、FG,EG、FG分别为直角BCE、直角BCF的斜边中线,直角三角形斜边中线长等于斜边长的一半EGFGBC=10=5,D为EF中点GDEF,即EDG90,又D是EF的中点,,在中,,故选C.【点睛】本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GDEF是解
18、题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、0.1【解析】试题解析:原式=2.0510-3=0.1【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n0时,n是几,小数点就向右移几位;n0时,n是几,小数点就向左移几位14、3x(x1)【解析】原式提取公因式即可得到结果【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键15、1:3【解析】根据相似三角形的判定,由DEAC,可知DOECOA,BDEBCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:A
19、C=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.故答案为1:3.16、【解析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:故答案为【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等17、2【解析】根据平方根的定义进行计算即可【详解】解:i2=1,(1+i)(1i)=1i2=2,(
20、1+i)(1i)的平方根是,故答案为【点睛】本题考查平方根以及实数的运算,解题关键掌握平方根的定义18、 【解析】列举出所有情况,看甲排在中间的情况占所有情况的多少即为所求的概率根据题意,列出甲、乙、丙三个同学排成一排拍照的所有可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,只有2种甲在中间,所以甲排在中间的概率是=故答案为;点睛:本题主要考查了列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比,关键是列举出同等可能的所有情况三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)2.【解析】(1)根据相似三角形
21、的判定,易证ABFBEC,从而可以证明BAF=CBE成立;(2)根据锐角三角函数和三角形的相似可以求得AF的长【详解】(1)证明:四边形ABCD是平行四边形,ABCD,ADBC,AD=BC,D+C=180,ABF=BEC,AFB+AFE=180,AFE=D,C=AFB,ABFBEC,BAF=CBE;(2)AEDC,AD=5,AB=8,sinD=,AE=4,DE=3EC=5AEDC,ABDC,AED=BAE=90,在RtABE中,根据勾股定理得:BE=BC=AD=5,由(1)得:ABFBEC, =即 =解得:AF=BF=2【点睛】本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解
22、答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答20、见解析【解析】(1)根据平行四边形的性质可得ABDC,OB=OD,由平行线的性质可得OBE=ODF,利用ASA判定BOEDOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EFBD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形【详解】(1)四边形ABCD是平行四边形,O是BD的中点,ABDC,OB=OD,OBE=ODF,又BOE=DOF,BOEDOF(ASA),EO=FO,四边形BEDF是平行四边形
23、;(2)EFBD四边形BEDF是平行四边形,EFBD,平行四边形BEDF是菱形【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.21、(1):,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:,共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,在规划1中,(小黄赢);红心牌点数是黑桃牌点数的整倍数有4种可能,在规划2中
24、,(小黄赢).,小黄要在游戏中获胜,小黄会选择规则1.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.22、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)ACB的面积为1【解析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得【详解】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=4时,y=2,则点B(4,2),将点A(2,4)、B(4,2)代入y=kx+b,得:,解
25、得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则ACB的面积=21=1【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键23、B 60 【解析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即CQP=90,进而得出APC的度数.详解:(1)B,60;(2)补全图形如图所示; 的大小保持不变, 理由如下:设与交于点直线是等边的对称轴, 经顺时针旋转后与重合 , 点在线段的垂直平分线上点在线段的
26、垂直平分线上垂直平分,即 点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.24、(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.【解析】(1) 根据称职的人数及其所占百分比求得总人数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 (2) 根据中位数和众数的定义求解可得;(3) 根据中位数的意义求得称职
27、和优秀的中位数即可得出符合要求的数据 【详解】(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),总人数为:2050%=40(人),不称职”百分比:a=440=10%,“基本称职”百分比:b=1040=25%,“优秀”百分比:d=1-10%-25%-50%=15%,“优秀”人数为:4015%=6(人),得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,
28、28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.“称职”和“优秀”的销售员月销售额的中位数为:22万,要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【点睛】考查频数分布直方图、 扇形统计图、 中位数、 众数等知识, 解题的关键是灵活运用所学知识解决问题.25、(1);(2);(3)【解析】试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;(2)根据余切的定义得到ctan60=,然后把tan60=代入计算
29、即可;(3)作AHBC于H,如图2,先在RtACH中利用余切的定义得到ctanC=2,则可设AH=x,CH=2x,BH=BCCH=202x,接着再在RtABH中利用勾股定理得到(202x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解解:(1)BC=3,AB=5,AC=4,ctanB=;(2)ctan60=;(3)作AHBC于H,如图2,在RtACH中,ctanC=2,设AH=x,则CH=2x,BH=BCCH=202x,在RtABH中,BH2+AH2=AB2,(202x)2+x2=102,解得x1=6,x2=10(舍去),BH=2026=8,cosB=
30、考点:解直角三角形26、(1)1 ;(1) yx14x+1或yx1+6x+1【解析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:yx1+bx+1,根据二次函数的性质求出点C的坐标,根据题意求出直线CC的解析式,代入计算即可【详解】解:(1)由x140得,x11,x11,点A位于点B的左侧,A(1,0),直线yx+m经过点A,1+m0,解得,m1,点D的坐标为(0,1),AD1;(1)设新抛物线对应的函数表达式为:yx1+bx+1,yx1+bx+1(x+)1+1,则点C的坐标为(,1),CC平行于直线AD,且经过C(0,4),直线CC的解析式为:yx4,
31、14,解得,b14,b16,新抛物线对应的函数表达式为:yx14x+1或yx1+6x+1【点睛】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键27、(1)见解析;(2)【解析】分析:(1)如下图,连接OD,由OA=OD可得DAO=ADO,结合CAD=DAB,可得CAD=ADO,从而可得ODAC,由此可得C+CDO=180,结合C=90可得CDO=90即可证得CD是O的切线;(2)如下图,连接BD,由AB是O的直径可得ADB=90=C,结合CAD=DAB可得ACDADB,由此可得,在RtABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.详解:(1)如下图,连接ODOA=OD,DAB=ODA,CAD=DAB,ODA=CADACODC+ODC=180C=90ODC=90ODCD,CD是O的切线(2)如下图,连接BD,AB是O的直径,ADB=90,AB=9,AD=6,BD=3,CAD=BAD,C=ADB=90,ACDADB,CD=点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.
限制150内