《吉林省四平市重点中学2023届中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《吉林省四平市重点中学2023届中考联考数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知二次函数的图象如图所示,则下列说法正确的是( )A0B0C0D02如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A7B8C9D103
2、下列计算中,正确的是()Aa3a=4a2B2a+3a=5a2C(ab)3=a3b3D7a314a2=2a4如图,在RtABC中,C=90,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=18,则ABD的面积是()A18B36C54D725如图,AB是O的直径,点C,D,E在O上,若AED20,则BCD的度数为()A100B110C115D1206在ABC中,点D、E分别在边AB、AC上,如果AD=1,BD=3,那么由下列条件能够判断DEBC的是()ABCD7在平面直角坐标系中
3、,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上,已知正方形A1B1C1D1的边长为l,B1C1O=60,B1C1B2C2B3C3,则正方形A2017B2017C2017 D2017的边长是()A()2016 B()2017 C()2016 D()20178如图,则的大小是ABCD9如果向北走6km记作+6km,那么向南走8km记作()A+8km B8km C+14km D2km10将抛物线绕着点(0,3)旋转180以后,所得图象的解析式是( )ABCD11某美术社团为
4、练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )ABCD12如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为( )A2BCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,把ABC绕点C按顺时针方向旋转35,得到ABC,AB交AC于点D,若ADC=90,则A= .14不等式12x6的负整数解是_15如图,在平面直角坐标系xOy中,DEF可以看作是ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一
5、种由ABC得到DEF的过程:_16小明用一个半径为30cm且圆心角为240的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_cm17如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y(x0)的图象经过顶点B,则k的值为_18分解因式:2x28=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在RtABC中,C=90,AC=AB求证:B=30请填空完成下列证明证明:如图,作RtABC的斜边上的中线CD,则 CD=AB=AD ( )AC=AB,AC=CD=AD 即ACD是等边
6、三角形A= B=90A=3020(6分)计算:.21(6分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?22(8分)如图,在ABC中,AB=BC,CDAB于点D,CD=BDBE平分ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.(1)求证:ADCFDB;(2)求证:(3)判断ECG的形状,并证明你的结论.23(8分)计算:|4sin30|+()124(10分)已知:如图,在直角梯形ABCD中,ADBC,ABC=90,DEAC于点F,交BC于点G,交A
7、B的延长线于点E,且AE=AC求证:BG=FG;若AD=DC=2,求AB的长25(10分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?26(12分)如图,在边长为1个单位长度的小正方形组成的1212网格中建立平面直角坐标系,格点ABC(顶点是网格线的交点)的坐标分别是A(2,2),B(3,1),C(1,0)(1)将ABC绕
8、点O逆时针旋转90得到DEF,画出DEF;(2)以O为位似中心,将ABC放大为原来的2倍,在网格内画出放大后的A1B1C1,若P(x,y)为ABC中的任意一点,这次变换后的对应点P1的坐标为 .27(12分)如图,直线y1=x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求y与x之间的函数关系式;(2)直接写出当x0时,不等式x+b的解集;(3)若点P在x轴上,连接AP把ABC的面积分成1:3两部分,求此时点P的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据抛物
9、线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y0,确定a+b+c的符号【详解】解:抛物线开口向上,a0,抛物线交于y轴的正半轴,c0,ac0,A错误;-0,a0,b0,B正确;抛物线与x轴有两个交点,b2-4ac0,C错误;当x=1时,y0,a+b+c0,D错误;故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定2、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】根据三视图知
10、,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选C【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.3、C【解析】根据同底数幂的运算法则进行判断即可.【详解】解:A、a3a=3a2,故原选项计算错误;B、2a+3a=5a,故原选项计算错误;C、(ab)3=a3b3,故原选项计算正确;D、7a314a2=a,故原选项计算错误;故选C【点睛】本题考点:同底数幂的混合运算.4、B【解析】根据题意可知AP为CAB的平分线,由角平分线的性质得出CD=DH,再由三角形的面积公式可得出结论【详解】由题意可知AP为CAB的平分线,过点
11、D作DHAB于点H,C=90,CD=1,CD=DH=1AB=18,SABD=ABDH=181=36故选B【点睛】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键5、B【解析】连接AD,BD,由圆周角定理可得ABD20,ADB90,从而可求得BAD70,再由圆的内接四边形对角互补得到BCD=110.【详解】如下图,连接AD,BD,同弧所对的圆周角相等,ABD=AED20,AB为直径,ADB90,BAD90-20=70,BCD=180-70=110.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.6、D【解析】如图,AD=1,BD=3,当时,又DAE
12、=BAC,ADEABC,ADE=B,DEBC,而根据选项A、B、C的条件都不能推出DEBC,故选D7、C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案解:如图所示:正方形A1B1C1D1的边长为1,B1C1O=60,B1C1B2C2B3C3D1E1=B2E2,D2E3=B3E4,D1C1E1=C2B2E2=C3B3E4=30,D1E1=C1D1sin30=,则B2C2=()1,同理可得:B3C3=()2,故正方形AnBnCnDn的边长是:()n1则正方形A2017B2017C2017D2017的边长是:()2故选C“点睛”此题主要考查了正方形的性质以
13、及锐角三角函数关系,得出正方形的边长变化规律是解题关键8、D【解析】依据,即可得到,再根据,即可得到【详解】解:如图,又,故选:D【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等9、B【解析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量若向北走6km记作+6km,那么向南走8km记作8km故选:B【点睛】本题考查正负数在生活中的应用注意用正负数表示的量必须是具有相反意义的量10、D【解析】将抛物线绕着点(0,3)旋转180以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180以后所得图象
14、的解析式.【详解】由题意得,a=-.设旋转180以后的顶点为(x,y),则x=20-(-2)=2,y=23-5=1,旋转180以后的顶点为(2,1),旋转180以后所得图象的解析式为:.故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.11、A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程详解:设他上月买了x本笔记
15、本,则这次买了(x+20)本,根据题意得:.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.12、B【解析】作PAx轴于点A,构造直角三角形,根据三角函数的定义求解【详解】过P作x轴的垂线,交x轴于点A,P(2,4),OA=2,AP=4,.故选B【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.二、填空题:(本大题共6个小题,每小题4分,共24分)13、55.【解析】试题分析:把ABC绕点C按顺时针方向旋转35,得到ABCACA=35,A =A,.ADC=90,A =55. A=55.考点:1.旋转的性
16、质;2.直角三角形两锐角的关系.14、2,1【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可解:12x6,移项得:2x61,合并同类项得:2x5,不等式的两边都除以2得:x,不等式的负整数解是2,1,故答案为:2,1点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键15、平移,轴对称【解析】分析:根据平移的性质和轴对称的性质即可得到由OCD得到AOB的过程详解:ABC向上平移5个单位,再沿y轴对折,得到DEF,故答案为:平移,轴对称点睛:考查了坐标与图形变化-旋转,平移,轴对
17、称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小16、20【解析】先求出半径为30cm且圆心角为240的扇形纸片的弧长,再利用底面周长=展开图的弧长可得【详解】=40设这个圆锥形纸帽的底面半径为r根据题意,得40=2r,解得r=20cm故答案是:20.【点睛】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值17、1【解析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可【详解】解:A(3,4),OC=5,CB=OC=5,则点B的横坐标为35=8
18、,故B的坐标为:(8,4),将点B的坐标代入y=得,4=,解得:k=1故答案为:118、2(x+2)(x2)【解析】先提公因式,再运用平方差公式.【详解】2x28,=2(x24),=2(x+2)(x2)【点睛】考核知识点:因式分解.掌握基本方法是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、直角三角形斜边上的中线等于斜边的一半;1【解析】根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可【详解】证明:如图,作RtABC的斜边上的中线CD,则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),AC=AB,AC=CD=AD
19、即ACD是等边三角形,A=1,B=90A=30【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练20、 【解析】【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式= =.【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.21、自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x
20、千米/小时,则汽车速度为2.5x千米/小时,由题意得,解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.22、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)首先根据AB=BC,BE平分ABC,得到BEAC,CE=AE,进一步得到ACD=DBF,结合CD=BD,即可证明出ADCFDB;(2)由ADCFDB得到AC=BF,结合CE=AE,即可证明出结论;(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由DBF=GBC=GCB=ECF,得ECO=45,结合BEAC,即可判断出ECG的形状.【详解】解:(1)
21、AB=BC,BE平分ABCBEACCDABACD=ABE(同角的余角相等)又CD=BDADCFDB(2)AB=BC,BE平分ABCAE=CE则CE=AC由(1)知:ADCFDBAC=BFCE=BF(3)ECG为等腰直角三角形,理由如下:由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,则EGC=2CBG=ABC=45,又BEAC,故ECG为等腰直角三角形.【点睛】本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大23、41【解析】先逐项化简,再合并同类项或同类二次根式即可.【详解】解:原式3(2)123+21241【点
22、睛】本题考查了实数的混合运算,熟练掌握特殊角的三角函数值,二次根式的性质以及负整数指数幂的意义是解答本题的关键.24、(1)证明见解析;(2)AB=【解析】(1)证明:,DEAC于点F,ABC=AFEAC=AE,EAF=CAB,ABCAFEAB=AF连接AG,AG=AG,AB=AFRtABGRtAFGBG=FG(2)解:AD=DC,DFACE=30FAD=E=30AB=AF=25、(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=10x2+100x+2000,当x=5时,商场获取最大利润为2250元【解析】(1)根据“总利润=每件的利润每天的销量”列方程求解可得
23、;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得【详解】解:(1)依题意得:(10080x)(100+10x)=2160,即x210x+16=0,解得:x1=2,x2=8,经检验:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(10080x)(100+10x)=10x2+100x+2000=10(x5)2+2250,100,当x=5时,y取得最大值为2250元答:y=10x2+100x+2000,当x=5时,商场获取最大利润为2250元【点睛】本题考查二次函数的应用和一元二次方程的应用,解题关
24、键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式26、 (1)见解析;(2)见解析,(2x,2y)【解析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点D、E、F,即可得到DEF;(2)先根据位似中心的位置以及放大的倍数,画出原三角形各顶点的对应顶点,再顺次连接各顶点,得到A1B1C1,根据A1B1C1结合位似的性质即可得P1的坐标.【详解】(1)如图所示,DEF即为所求;(2)如图所示,A1B1C1即为所求,这次变换后的对应点P1的坐标为(2x,2y),故答案为(2x,2y)【点睛】本题主要考查了位似变换与旋转变换,解决问题的关键是先作出图形各顶点的对应顶点,再连接各顶点
25、得到新的图形在画位似图形时需要注意,位似图形的位似中心可能在两个图形之间,也可能在两个图形的同侧.27、(1);(2)x1;(3)P(,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x0时,不等式x+b的解集为x1;(3)分两种情况进行讨论,AP把ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3=,或OP=4=,进而得出点P的坐标详解:(1)把A(1,m)代入y1=x+4,可得m=1+4=3,A(1,3),把A(1,3)代入双曲线y=,可得k=13=3,y与x之间的函数关系式为:y=;(2)A(1,3),当x0时,不等式x+b的解集为:x1;(3)y1=x+4,令y=0,则x=4,点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,b=,y2=x+,令y2=0,则x=3,即C(3,0),BC=7,AP把ABC的面积分成1:3两部分,CP=BC=,或BP=BC=OP=3=,或OP=4=,P(,0)或(,0)点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点
限制150内