吴淞中学2023年高考数学全真模拟密押卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《吴淞中学2023年高考数学全真模拟密押卷含解析.doc》由会员分享,可在线阅读,更多相关《吴淞中学2023年高考数学全真模拟密押卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )ABCD2若执行如图所示的程序框图,则输出的值是( )ABCD43已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为( )ABCD4如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为( )ABCD5的展开式中的系数是( )A160B240C280D3206如图,在平行四边形中,为对角线的交点,点为
3、平行四边形外一点,且,则( )ABCD7下图是我国第2430届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( )金牌(块)银牌(块)铜牌(块)奖牌总数2451112282516221254261622125027281615592832171463295121281003038272388A中国代表团的奥运奖牌总数一直保持上升趋势B折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.58某设备使用年限x(年)与所
4、支出的维修费用y(万元)的统计数据分别为,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为( )A8年B9年C10年D11年9的二项展开式中,的系数是( )A70B-70C28D-2810将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件11M、N是曲线y=sinx与曲线y=cosx的两个不同的交点,则|MN|的最小值为()ABCD212已知数列的通项公式是,则( )A0B55C66D78二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的
5、焦点为,斜率为2的直线与的交点为,若,则直线的方程为_14已知椭圆C:1(ab0)的左、右焦点分别为F1,F2,椭圆的焦距为2c,过C外一点P(c,2c)作线段PF1,PF2分别交椭圆C于点A、B,若|PA|AF1|,则_.15已知为抛物线:的焦点,过作两条互相垂直的直线,直线与交于、两点,直线与交于、两点,则的最小值为_16已知不等式组所表示的平面区域为,则区域的外接圆的面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.18(12分)如图,直三棱柱中,底面为等腰直角三角形,分别为,的
6、中点,为棱上一点,若平面.(1)求线段的长;(2)求二面角的余弦值.19(12分)某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:亮灯时长/频数1020402010以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.(1)试估计的值;(2)设表示这10000盏灯在某一时刻亮灯的数目.求的数学期望和方差;若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).附:某盏
7、灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;若,则,.20(12分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB/CD,AB =2BC,点Q为AE的中点.(1)求证:AC/平面DQF;(2)若ABC=60,ACFB,求BC与平面DQF所成角的正弦值.21(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数(1)写出与的直角坐标方程;(2)在什么范围内取值时,与有交点22(10分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.参考答案一、选择题:本题共12小题
8、,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.2、D【解析】模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论【详解】;如此循环下去,当时,此时不满足,循环结束,输出的值是4.故选:D【点睛】本题考查程序框图,考查循环结构解题时模拟程序运行,观
9、察变量值的变化,确定程序功能,可得结论3、C【解析】对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【详解】当时,显然当时有,经单调性分析知为的第一个极值点又时,均为其极值点函数不能在端点处取得极值,对应极值,故选:C【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题4、B【解析】建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱
10、底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.5、C【解析】首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.6、D【解析】连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 吴淞 中学 2023 年高 数学 模拟 密押卷含 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内