《南京市鼓楼区2023届中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《南京市鼓楼区2023届中考联考数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1在平面直角坐标系中,二次函数y=a(xh)2+k(a0)的图象可能是ABCD2下列分式是最简分式的是( )ABCD3如下图所示,该几何体的俯视图是 ( )AB
2、CD4吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为()A27.1102 B2.71103 C2.71104 D0.2711055如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A主视图B俯视图C左视图D一样大6哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A BC D7某班要从9名百米跑成绩各不相同的同学中选4名参加4100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A平均数B
3、中位数C众数D方差8我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()AB2CD9下列各式中计算正确的是()Ax3x3=2x6B(xy2)3=xy6C(a3)2=a5Dt10t9=t10如图是由四个相同的小正方体堆成的物体,它的正视图是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级
4、别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):如果你是教练,要选派一名选手参加国际比赛,那么你会选择_(填“甲” 或“乙”),理由是_12若点M(1,m)和点N(4,n)在直线y=x+b上,则m_n(填、或=)13在ABC中,BAC45,ACB75,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_14如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为_.15如图,中,则 _16已知O的半径为5,由直径AB
5、的端点B作O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为_,此函数的最大值是_,最小值是_三、解答题(共8题,共72分)17(8分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分钟)10103503020850(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天如果小王四月份生产甲种产品a件(a为正整数)用含a的代数式表示小王四月份生产乙种产品的件数;已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得
6、2.80元,若小王四月份的工资不少于1500元,求a的取值范围18(8分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点将ACD绕点A顺时针方向旋转,得ACD,记旋转角为(I)如图,连接BD,当BDOA时,求点D的坐标;(II)如图,当60时,求点C的坐标;(III)当点B,D,C共线时,求点C的坐标(直接写出结果即可)19(8分) “春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅 (B)、菜馅(C)、三丁馅 (D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况
7、绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民人数是 人;(2)将图 补充完整;( 直接补填在图中)(3)求图中表示“A”的圆心角的度数;(4)若居民区有8000人,请估计爱吃D汤圆的人数20(8分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?21(8分)已知P是O外一点,PO交O于点C,OC=C
8、P=2,弦ABOC,AOC的度数为60,连接PB求BC的长;求证:PB是O的切线22(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且ECF45,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH填空:AHC ACG;(填“”或“”或“”)线段AC,AG,AH什么关系?请说明理由;设AEm,AGH的面积S有变化吗?如果变化请求出S与m的函数关系式;如果不变化,请求出定值请直接写出使CGH是等腰三角形的m值23(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天
9、的批发价和零售价如表所示:品名猕猴桃芒果批发价元千克2040零售价元千克2650他购进的猕猴桃和芒果各多少千克?如果猕猴桃和芒果全部卖完,他能赚多少钱?24我们知道中,如果,那么当时,的面积最大为6;(1)若四边形中,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.(2)已知四边形中,求为多少时,四边形面积最大?并求出最大面积是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【详解】二次函数y=a(xh)2+k(a0)二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简
10、单运用二次函数性质,解题的关键是熟练掌握二次函数性质.2、C【解析】解:A,故本选项错误;B,故本选项错误;C,不能约分,故本选项正确;D,故本选项错误故选C点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键3、B【解析】根据俯视图是从上面看到的图形解答即可.【详解】从上面看是三个长方形,故B是该几何体的俯视图.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.4、C【解析】科学记
11、数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将27100用科学记数法表示为:. 2.71104.故选:C.【点睛】本题考查科学记数法表示较大的数。5、C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C6、D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得故选D考点:由实际问题抽象出二元一次方程组7、B【解析】总共有9名同
12、学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数故选B.8、C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=611sin60=故选C【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答9、D【解析】试题解析:A、 原式计算错误,故本选项错误;B、 原式计算错误,故本选项错误;C、 原式计算错误,故
13、本选项错误;D、 原式计算正确,故本选项正确;故选D点睛:同底数幂相除,底数不变,指数相减.10、A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图二、填空题(本大题共6个小题,每小题3分,共18分)11、乙 乙的比赛成绩比较稳定 【解析】观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论【详解】观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;
14、 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定 故答案为乙,乙的比赛成绩比较稳定【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好12、【解析】根据一次函数的性质,k0时,y随x的增大而减小.【详解】因为k=0,所以函数值y随x的增大而减小,因为1n.故答案为:【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数的性质.13、【解析】连接CD在根据垂直平分线的性质可得到ADC为等腰直角三角形,结合已知的即
15、可得到BCD的大小,然后就可以解答出此题【详解】解:连接CD,DE垂直平分AC,ADCD,DCABAC45,ADC是等腰直角三角形,ADC90,BDC90,ACB75,BCD30,BC ,故答案为【点睛】此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明ADC为等腰直角三角形14、-1【解析】试题分析:正方形ADEF的面积为4,正方形ADEF的边长为2,BF=2AF=4,AB=AF+BF=2+4=1设B点坐标为(t,1),则E点坐标(t-2,2),点B、E在反比例函数y=的图象上,k=1t=2(t-2),解得t=-1,k=-1考点:反比例函数系数k的几何意义15、17【
16、解析】RtABC中,C=90,tanA= ,AC8,AB= =17,故答案为17.16、x2+x+20(0x10) 不存在 【解析】先连接BP,AB是直径,BPBM,所以有,BMP=APB=90,又PBM=BAP,那么有PMBPAB,于是PM:PB=PB:AB,可求从而有(0x10),再根据二次函数的性质,可求函数的最大值【详解】如图所示,连接PB,PBM=BAP,BMP=APB=90,PMBPAB,PM:PB=PB:AB,(0x10), AP+2PM有最大值,没有最小值,y最大值= 故答案为(0x10),不存在【点睛】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.
17、三、解答题(共8题,共72分)17、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)600-; a1【解析】(1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;(2)根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;根据“小王四月份的工资不少于1500元”即可列出不等式.【详解】(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:,解这个方程组得:,答:小王每生产一件甲种产品和每生产
18、一件乙种产品分别需要15分钟、20分钟;(2)生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,一小时生产甲产品4件,生产乙产品3件,所以小王四月份生产乙种产品的件数:3(258)=600-;依题意:1.5a+2.8(600-)1500,16800.6a1500,解得:a1.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.18、(I)(10,4)或(6,4)(II)C(6,2)(III)C(8,4)C(,)【解析】(I)如图,当OBAC,四边形OBCA是平行四边形,只要证明B、C、D共线即可解决问题
19、,再根据对称性确定D的坐标;(II)如图,当=60时,作CKAC于K解直角三角形求出OK,CK即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图,A(8,0),B(0,4),OB=4,OA=8,AC=OC=AC=4,当OBAC,四边形OBCA是平行四边形,AOB=90,四边形OBCA是矩形,ACB=90,ACD=90,B、C、D共线,BDOA,AC=CO, BD=AD,CD=CD=OB=2,D(10,4),根据对称性可知,点D在线段BC上时,D(6,4)也满足条件综上所述,满足条件的点D坐标(10,4)或(6,4)(II)如图,当=60时,作CKAC于K在RtACK
20、中,KAC=60,AC=4,AK=2,CK=2,OK=6,C(6,2)(III)如图中,当B、C、D共线时,由()可知,C(8,4)如图中,当B、C、D共线时,BD交OA于F,易证BOFACF,OF=FC,设OF=FC=x,在RtABC中,BC=8,在RTBOF中,OB=4,OF=x,BF=8x,(8x)2=42+x2,解得x=3,OF=FC=3,BF=5,作CKOA于K,OBKC,=,=,KC=,KF=,OK=,C(,)【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题19
21、、(1)600;(2)120人,20%;30%;(3)108(4)爱吃D汤圆的人数约为3200人【解析】试题分析:(1)由两幅统计图中的信息可知,喜欢B类的有60人,占被调查人数的10%,由此即可计算出被调查的总人数为6010%=600(人);(2)由(1)中所得被调查总人数为600人结合统计图中已有的数据可得喜欢C类的人数为:600-180-60-240=120(人),喜欢C类的占总人数的百分比为:120600100%=20%,喜欢A类的占总人数的百分比为:180600100%=30%,由此即可将统计图补充完整;(3)由(2)中所得数据可得扇形统计图中A类所对应的圆心角度数为:36030%=
22、108;(4)由扇形统计图中的信息:喜欢D类的占总人数的40%可得:800040%=3200(人);试题解析:(1)本次参加抽样调查的居民的人数是:6010%=600(人); 故答案为600;(2)由题意得:C的人数为600(180+60+240)=600480=120(人),C的百分比为120600100%=20%;A的百分比为180600100%=30%;将两幅统计图补充完整如下所示:(3)根据题意得:36030%=108,图中表示“A”的圆心角的度数108;(4)800040%=3200(人),即爱吃D汤圆的人数约为3200人20、(1)商场两次共购进这种运动服600套;(2)每套运动服
23、的售价至少是200元【解析】(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;(2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%” 即可列不等式求解.【详解】(1)设商场第一次购进x套运动服,由题意得解这个方程,得经检验,是所列方程的根答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y元,由题意得,解这个不等式,得答:每套运动服的售价至少是200元【点睛】此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解
24、.21、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定OBC的等边三角形,则BC=OC=2;(2)欲证明PB是O的切线,只需证得OBPB即可(1)解:如图,连接OBABOC,AOC=60,OAB=30,OB=OA,OBA=OAB=30,BOC=60,OB=OC,OBC的等边三角形,BC=OC又OC=2,BC=2;(2)证明:由(1)知,OBC的等边三角形,则COB=60,BC=OCOC=CP,BC=PC,P=CBP又OCB=60,OCB=2P,P=30,OBP=90,即OBPB又OB是半径,PB是O的切线考点:切线的判定22、(1)=;(2)结论:AC2AGAH
25、理由见解析;(3)AGH的面积不变m的值为或2或84.【解析】(1)证明DAC=AHC+ACH=43,ACH+ACG=43,即可推出AHC=ACG;(2)结论:AC2=AGAH只要证明AHCACG即可解决问题;(3)AGH的面积不变理由三角形的面积公式计算即可;分三种情形分别求解即可解决问题.【详解】(1)四边形ABCD是正方形,ABCBCDDA4,DDAB90DACBAC43,AC,DACAHC+ACH43,ACH+ACG43,AHCACG故答案为(2)结论:AC2AGAH理由:AHCACG,CAHCAG133,AHCACG,AC2AGAH(3)AGH的面积不变理由:SAGHAHAGAC2(
26、4)21AGH的面积为1如图1中,当GCGH时,易证AHGBGC,可得AGBC4,AHBG8,BCAH,,AEAB如图2中,当CHHG时,易证AHBC4,BCAH,1,AEBE2如图3中,当CGCH时,易证ECBDCF22.3在BC上取一点M,使得BMBE,BMEBEM43,BMEMCE+MEC,MCEMEC22.3,CMEM,设BMBEm,则CMEMm,m+m4,m4(1),AE44(1)84,综上所述,满足条件的m的值为或2或84【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题23、(1)购进猕猴桃
27、20千克,购进芒果30千克;(2)能赚420元钱【解析】设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;根据利润销售收入成本,即可求出结论【详解】设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:答:购进猕猴桃20千克,购进芒果30千克元答:如果猕猴桃和芒果全部卖完,他能赚420元钱【点睛】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算24、 (1)当,时有最大值1;(2)当时,面积有最大值32.【解析】(1)由题意当ADBC,BDAD时,四边形ABCD的面积最大,由此即可解决问题(2)设BD=x,由题意:当ADBC,BDAD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题【详解】(1) 由题意当ADBC,BDAD时,四边形ABCD的面积最大,最大面积为6(16-6)=1故当,时有最大值1;(2)当,时有最大值,设, 由题意:当ADBC,BDAD时,四边形ABCD的面积最大,抛物线开口向下当 时,面积有最大值32.【点睛】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题
限制150内