四川省宜宾市叙州区第一中学2023年高三第五次模拟考试数学试卷含解析.doc
《四川省宜宾市叙州区第一中学2023年高三第五次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省宜宾市叙州区第一中学2023年高三第五次模拟考试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列满足,且 ,则数列的通项公式为( )ABCD2在中,若,则实数( )ABCD3若函数恰有3个零点,则实数的取值范围
2、是( )ABCD4复数满足 (为虚数单位),则的值是()ABCD5已知,是两条不重合的直线,是两个不重合的平面,则下列命题中错误的是( )A若,则或B若,则C若,则D若,则6已知复数满足(其中为的共轭复数),则的值为( )A1B2CD7若集合,则( )ABCD8设命题:,则为A,B,C,D,9已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为ABCD10已知定义在上函数的图象关于原点对称,且,若,则( )A0B1C673D67411记等差数列的公差为,前项和为.若,则( )ABCD12已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长
3、度后得到函数图象,则函数的解析式为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知实数,对任意,有,且,则_.14已知点M是曲线y2lnxx23x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为_15满足约束条件的目标函数的最小值是 . 16曲线在点处的切线方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数f(x)=ax2alnx,g(x)=,其中aR,e=2.718为自然对数的底数.()讨论f(x)的单调性;()证明:当x1时,g(x)0;()确定a的所有可能取值,使得f(x)g(x)在区间(1,+)内恒成立.18(
4、12分)设复数满足(为虚数单位),则的模为_.19(12分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.20(12分)已知数列,数列满足,n(1)若,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立当数列为等差数列时,求证:数列,的公差相等;数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由21(12分)如图,在三棱锥中,平面平面,、分别为、中点(1)求证:;(2)求二面角的大小22(10分)已知椭圆
5、的焦距为2,且过点(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,()证明:平分线段(其中为坐标原点);()当取最小值时,求点的坐标参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:因为,所以,即,所以数列是以为首项,公比为的等比数列,所以,即,所以数列的通项公式是,故选D考点:数列的通项公式2、D【解析】将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.3、B【解
6、析】求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.4、C【解析】直接利用复数的除法的运算法则化简求解即可【详解】由得:本题正确选项:【点睛】本题考查复数的除法的运算法则的应用,考查计算能力5、D【解析】根据线面平行和面面平行的性质,可判定A;由线面平行
7、的判定定理,可判断B;C中可判断,所成的二面角为;D中有可能,即得解.【详解】选项A:若,根据线面平行和面面平行的性质,有或,故A正确;选项B:若,由线面平行的判定定理,有,故B正确;选项C:若,故,所成的二面角为,则,故C正确;选项D,若,有可能,故D不正确.故选:D【点睛】本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力,属于中档题.6、D【解析】按照复数的运算法则先求出,再写出,进而求出.【详解】,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.7、A【解析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可【详解】解
8、:由集合,解得,则故选:【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键属于基础题8、D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.9、B【解析】双曲线的渐近线方程为,由题可知设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B10、B【解析】由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,
9、故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解11、C【解析】由,和,可求得,从而求得和,再验证选项.【详解】因为,所以解得,所以,所以,故选:C.【点睛】本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题.12、C【解析】根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 宜宾市 叙州区 第一 中学 2023 年高 第五 模拟考试 数学试卷 解析
限制150内