北京市第七中学2023届中考四模数学试题含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《北京市第七中学2023届中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《北京市第七中学2023届中考四模数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1关于x的不等式x-b0恰有两个负整数解,则b的取值范围是A B C D 24的平方根是( )A16B2C2D3如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心
2、,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A(2,2),(3,2)B(2,4),(3,1)C(2,2),(3,1)D(3,1),(2,2)4若正六边形的半径长为4,则它的边长等于( )A4B2CD5如图,ABC内接于O,AD为O的直径,交BC于点E,若DE=2,OE=3,则tanACBtanABC=( )A2B3C4D56在一些美术字中,有的汉字是轴对称图形下面4个汉字中,可以看作是轴对称图形的是()ABCD7如图,矩形ABCD中,E为DC的中点,AD:AB:2,CP:BP1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O下列结论:EP平分
3、CEB;PBEF;PFEF2;EFEP4AOPO其中正确的是()ABCD8根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A9B7C9D79已知a-2b=-2,则4-2a+4b的值是()A0B2C4D810 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()ABCD11下列四个图形中既是轴对称图形,又是中心对称图形的是()ABCD12据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A3.386108B0.338
4、6109C33.86107D3.386109二、填空题:(本大题共6个小题,每小题4分,共24分)13如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_14已知(x、y、z0),那么的值为_15如图,平行于x轴的直线AC分别交抛物线(x0)与(x0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则=_16一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为_17如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 _ y2.(填“”,“0恰有两个负整数解,可得x的负整数解为-1和-2 综合上述可得
5、故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.2、C【解析】试题解析:(2)2=4,4的平方根是2,故选C考点:平方根.3、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出即可【详解】解:线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,端点的坐标为:(2,2),(3,1)故选C【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键4、A【解析】试题分析:正六边形的中心角为3606=60,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正
6、六边形的边长是1故选A考点:正多边形和圆5、C【解析】如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案【详解】如图,连接BD、CD在和中,同理可得:,即为O的直径故选:C【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键6、A【解析】根据轴对称图形的概念判断即可【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形故选:A【点睛】本题考查
7、的是轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合7、B【解析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出EBC的度数和CEP的度数,则CEP=BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论【详解】解:设AD=x,AB=2x四边形ABCD是矩形AD=BC,CD=AB,D=C=ABC=90DCABBC=x,CD=2xCP:BP=1:2CP=x,BP=xE为DC的中点,CE=CD=x,tanCEP=,tanEBC=CEP=30,EBC=30CEB=60PEB=30CEP=PEBEP平分CEB,故正确
8、;DCAB,CEP=F=30,F=EBP=30,F=BEF=30,EBPEFB,BEBF=EFBPF=BEF,BE=BFPBEF,故正确F=30,PF=2PB=x,过点E作EGAF于G,EGF=90,EF=2EG=2xPFEF=x2x=8x22AD2=2(x)2=6x2,PFEF2AD2,故错误.在RtECP中,CEP=30,EP=2PC=xtanPAB=PAB=30APB=60AOB=90在RtAOB和RtPOB中,由勾股定理得,AO=x,PO=x4AOPO=4xx=4x2又EFEP=2xx=4x2EFEP=4AOPO故正确故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的
9、运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键8、C【解析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案【详解】当x=7时,y=6-7=-1,当x=4时,y=24+b=-1,解得:b=-9,故选C【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法9、D【解析】a-2b=-2,-a+2b=2,-2a+4b=4,4-2a+4b=4+4=8,故选D.10、C【解析】根据左视图是从左面看所得到的图形进行解答即可【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间故选:C【点
10、睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图11、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合12、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,
11、小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:数字338 600 000用科学记数法可简洁表示为3.386108故选:A【点睛】本题考查科学记数法表示较大的数二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据立体图形画出它的主视图,再求出面积即可【详解】主视图如图所示,主视图是由1个棱长均为1的正方体组成的几何体,主视图的面积为112=1.故答案为:1【点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图14、1【解析】解:由(x、y、z0),解得:x=3z,y=
12、2z,原式=1故答案为1点睛:本题考查了分式的化简求值和解二元一次方程组,难度适中,关键是先用z把x与y表示出来再进行代入求解15、5- 【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解设点C的坐标为(1,),则点B的坐标为(,),点D的坐标为(1,1),点E的坐标为(,1),则AB=,DE=1,则=5考点:二次函数的性质16、1.【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1点睛:本题为统计题,考查平均数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京市 第七 中学 2023 中考 数学试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内