《天津市东丽区重点中学2022-2023学年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《天津市东丽区重点中学2022-2023学年中考数学适应性模拟试题含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1方程的解为()Ax=1Bx=1Cx=2Dx=32要使式子有意义,的取值范围是( )AB且C. 或D 且3如图,四边形ABCD中,ADBC,B=90,E为AB上一点,分别以ED,E
2、C为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处若AD=3,BC=5,则EF的值是()AB2CD24下列四个几何体中,主视图与左视图相同的几何体有()A1个B2个C3个D4个5如图给定的是纸盒的外表面,下面能由它折叠而成的是( )ABCD6如图,在55的方格纸中将图中的图形N平移到如图所示的位置,那么下列平移正确的是( )A先向下移动1格,再向左移动1格B先向下移动1格,再向左移动2格C先向下移动2格,再向左移动1格D先向下移动2格,再向左移动2格7我国古代数学著作九章算术中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正
3、方形的边长均为1),则该“堑堵”的侧面积为()A16+16B16+8C24+16D4+48对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点9设x1,x2是一元二次方程x22x50的两根,则x12+x22的值为()A6B8C14D1610如图是本地区一种产品30天的销售图象,图是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润日销售量一件产品的销售利润,下列结论错误的是()A第24天的销售量为200件B第10天销售
4、一件产品的利润是15元C第12天与第30天这两天的日销售利润相等D第27天的日销售利润是875元11如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则BED的正切值等于()ABC2D12已知是二元一次方程组的解,则的算术平方根为( )A2BC2D4二、填空题:(本大题共6个小题,每小题4分,共24分)13抛物线 的顶点坐标是_14有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则ADE的度数为()A144B84C74D5415已知x1、x2是一元二次方程x22x10的两实数根,则的值是_16科技改变生活,手机导航极大方便了人们的出行如图,小
5、明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60方向行驶6千米至B地,再沿北偏东45方向行驶一段距离到达古镇C小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_千米17如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AEEF,CFEF,则正方形ABCD的边长为_18如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和
6、为,则k= 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元 (进价、售价均保持不变,利润销售收入进货成本)求A,B两种型号的电风扇的销售单价若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由20
7、(6分)问题提出(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, BAD=BCD=90,ADC=60,则四边形 ABCD 的面积为 ;问题探究(2).如图 2,在四边形 ABCD 中,BAD=BCD=90,ABC=135,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得BEF 的周长最小,作出图像即可. 21(6分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上(I)AC的长等于_(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分ABC的面积请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置
8、是如何找到的_(不要求证明)22(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?23(8分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是_,女生收看“两会”新闻次
9、数的中位数是_;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差该班级男生根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.24(10分)计算:25(10分)如图,在ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF
10、的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB2,AE2,求BAD的大小26(12分)如图1,菱形ABCD,AB=4,ADC=120o,连接对角线AC、BD交于点O, (1)如图2,将AOD沿DB平移,使点D与点O重合,求平移后的ABO与菱形ABCD重合部分的面积.(2)如图3,将ABO绕点O逆时针旋转交AB于点E,交BC于点F,求证:BE+BF=2,求出四边形OEBF的面积. 27(12分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PDPG,DFPG于点H,交AB于点F,
11、将线段PG绕点P逆时针旋转90得到线段PE,连接EF(1)求证:DFPG;(2)若PC1,求四边形PEFD的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】方程的两边同乘(x3)(x+1),得(x2) (x+1)=x(x3),解得x=1.检验:把x=1代入(x3)(x+1)=-40.原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.2、D【解析】根据二次根式和
12、分式有意义的条件计算即可.【详解】解: 有意义,a+20且a0,解得a-2且a0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.3、A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DHBC于H,由于ADBC,B=90,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BCBH=BCAD=2,然后在RtDHC中,利用勾股定理计算出DH=2,所以EF=解:分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在C
13、D边的点F处,EA=EF,BE=EF,DF=AD=3,CF=CB=5,AB=2EF,DC=DF+CF=8,作DHBC于H,ADBC,B=90,四边形ABHD为矩形,DH=AB=2EF,HC=BCBH=BCAD=53=2,在RtDHC中,DH=2,EF=DH=故选A点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了勾股定理4、D【解析】解:正方体的主视图与左视图都是正方形;球的主视图与左视图都是圆;圆锥主视图与左视图都是三角形;圆柱的主视图和左视图都是长方形;故选D5、B【解析】将A、B、C、D分别展开,能和原图相对应
14、的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.6、C【解析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在55方格纸中将图中的图形N平移后的位置如图所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.7、A【解析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧
15、面全等,是长高=4=,所以侧面积之和为2+44= 16+16,所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.8、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.9、C【解析】根据根与系数的关系得到x1+x2=2,x1x2=-5,再变形x12+x22得到(x1+x2)2-2x1x2,然后利用代入计算即可【详解】一元二次方程x2
16、-2x-5=0的两根是x1、x2,x1+x2=2,x1x2=-5,x12+x22=(x1+x2)2-2x1x2=22-2(-5)=1故选C【点睛】考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1x2= 10、C【解析】试题解析:A、根据图可得第24天的销售量为200件,故正确;B、设当0t20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,z=-x+25,当x=10时,y=-10+25=15,故正确;C、当0t24时,设产品日销售量y(单位:件)与时间
17、t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,y=t+100,当t=12时,y=150,z=-12+25=13,第12天的日销售利润为;15013=1950(元),第30天的日销售利润为;1505=750(元),7501950,故C错误;D、第30天的日销售利润为;1505=750(元),故正确故选C11、D【解析】根据同弧或等弧所对的圆周角相等可知BED=BAD,再结合图形根据正切的定义进行求解即可得.【详解】DAB=DEB,tanDEB= tanDAB=,故选D【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出
18、相等的角是解题关键12、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根【分析】是二元一次方程组的解,解得即的算术平方根为1故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、(0,-1)【解析】a=2,b=0,c=-1,-=0, ,抛物线的顶点坐标是(0,-1),故答案为(0,-1).14、B【解析】正五边形的内角是ABC=108,AB=BC,CAB=36,正六边形的内角是ABE=E=120,ADE+E+ABE+CAB=360,ADE=36012012036=84,故选B15、6【解析】已知x1,x2是一元二次方程x22x1=0的两实数根,根据方程解的定
19、义及根与系数的关系可得x122 x11=0, x222 x21=0,x1+x2=2,x1x2=-1,即x12=2 x1+1, x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.【详解】x1,x2是一元二次方程x22x1=0的两实数根,x122 x11=0, x222 x21=0,x1+x2=2,x1x2=-1,即x12=2 x1+1, x22=2 x2+1,= 故答案为6.【点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.16、3【解析】作BEAC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可【详解】解:作BEA
20、C于E,在RtABE中,sinBAC,BEABsinBAC,由题意得,C45,BC(千米),故答案为3【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键17、 【解析】分析:连接AC,交EF于点M,可证明AEMCMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB详解:连接AC,交EF于点M,AE丄EF,EF丄FC,E=F=90,AME=CMF, AEMCFM,AE=1,EF=FC=3,EM=,FM=,在RtAEM中,AM2=AE2+EM2=1+=,解得AM=,在RtFCM中,CM2=CF2+FM2=9+=,解得CM=,AC
21、=AM+CM=5,在RtABC中,AB=BC,AB2+BC2=AC2=25,AB=,即正方形的边长为故答案为:点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用18、1【解析】先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值【详解】解:根据题意可知,轴,设图中阴影部分的面积从左向右依次为,则,解得:k=2故答案为1考点:反比例函数综合题三、解答题:(本大题共9
22、个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标【解析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标【
23、详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30a)台依题意,得200a170(30a)5400,解得a10.答:A种型号的电风扇最多能采购10台(3)依题意,有(250200)a(210170)(30a)1400,解得a20.a10,在(2)的条件下超市不能实现利润为1400元的目标【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解20、(
24、1)3 ,(2)见解析【解析】(1)易证ABDCBD,再利用含30的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,AEF即为所求.【详解】(1)AB=BC,AD=CD=3, BAD=BCD=90,ABDCBD(HL)ADB=CDB=ADC=30,AB=SABD=四边形ABCD的面积为2SABD=(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,BEF的周长为BE+EF+BF=BE+EF+BF=BB为最短.故此时BEF的周长最小.【点睛】此题主要考查含30的直角三角形与对称
25、性的应用,解题的关键是根据题意作出相应的图形进行求解.21、 作abcd,可得交点P与P 【解析】(1)根据勾股定理计算即可;(2)利用平行线等分线段定理即可解决问题.【详解】(I)AC=,故答案为:;(II)如图直线l1,直线l2即为所求;理由:abcd,且a与b,b与c,c与d之间的距离相等,CP=PP=PA,SBCP=SABP=SABC故答案为作abcd,可得交点P与P【点睛】本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型22、(1)y=5x2+110x+1200;(2) 售价定为189元,利润最大1805元【解析】利
26、润等于(售价成本)销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y(200x170)(40+5x)5x2+110x+1200;(2)y5x2+110x+12005(x11)2+1805,抛物线开口向下,当x11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键23、(1)20,1;(2)2人;(1)男生比女生的波动幅度大【解析】(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数(2)先求出该班女生对“两会”新闻的“关注指数
27、”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差【详解】(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1故答案为20,1(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人,则=60%,解得:x=2答:该班级男生有2人(1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=2,男生比女生的波动幅度大【点睛】本题考查了平均数,中位数,方差的意义解题的关键是明确平均数
28、表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量24、-1【解析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得【详解】原式=14+1=1【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.25、 (1)见解析;(2) 60.【解析】(1)先证明AEBAEF,推出EAB=EAF,由ADBC,推出EAF=AEB=EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G根据菱形
29、的性质得出AB=2,AG=AE=,BAF=2BAE,AEBF然后解直角ABG,求出BAG=30,那么BAF=2BAE=60【详解】解:(1)在AEB和AEF中,AEBAEF,EAB=EAF,ADBC,EAF=AEB=EAB,BE=AB=AFAFBE,四边形ABEF是平行四边形,AB=BE,四边形ABEF是菱形;(2)连结BF,交AE于GAB=AF=2,GA=AE=2=,在RtAGB中,cosBAE=,BAG=30,BAF=2BAG=60,【点睛】本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.26、 (1);(2)2,【解析】分析:(1)
30、重合部分是等边三角形,计算出边长即可.证明:在图3中,取AB中点E,证明,即可得到 ,由知,在旋转过程60中始终有四边形的面积等于 =.详解:(1)四边形为菱形, 为等边三角形 AD/ 为等边三角形,边长 重合部分的面积:证明:在图3中,取AB中点E,由上题知, 又 , ,由知,在旋转过程60中始终有 四边形的面积等于=.点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.27、(1)证明见解析;(2)1.【解析】作PMAD,在四边形ABCD和四边形ABPM证ADPM;DFPG,得出GDH+DGH90,推出ADFMPG;还有两个直角即可证明AD
31、FMPG,从而得出对应边相等(2)由已知得,DG2PC2;ADFMPG得出DFPD;根据旋转,得出EPG90,PEPG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出【详解】解:(1)证明:四边形ABCD为正方形,ADAB,四边形ABPM为矩形,ABPM,ADPM,DFPG,DHG90,GDH+DGH90,MGP+MPG90,GDHMPG,在ADF和MPG中,ADFMPG(ASA),DFPG;(2)作PMDG于M,如图,PDPG,MGMD,四边形ABCD为矩形,PCDM为矩形,PCMD,DG2PC2;ADFMPG(ASA),DFPG,而PDPG,DFPD,线段PG绕点P逆时针旋转90得到线段PE,EPG90,PEPG,PEPDDF,而DFPG,DFPE,即DFPE,且DFPE,四边形PEFD为平行四边形,在RtPCD中,PC1,CD3,PD,DFPGPD,四边形CDMP是矩形,PMCD3,MDPC1,PDPG,PMAD,MGMD1,DG2,GDHMPG,DHGPMG90,DHGPMG,GH,PHPGGH,四边形PEFD的面积DFPH1【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值
限制150内