四川省成都航天中学2023届高考仿真模拟数学试卷含解析.doc
《四川省成都航天中学2023届高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都航天中学2023届高考仿真模拟数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为( )ABCD2正项等差数列的前和为,已知,则=(
2、 )A35B36C45D543定义两种运算“”与“”,对任意,满足下列运算性质:,;() ,则(2020)(20202018)的值为( )ABCD4已知函数,则下列判断错误的是( )A的最小正周期为B的值域为C的图象关于直线对称D的图象关于点对称5执行程序框图,则输出的数值为( )ABCD6复数的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限7函数的一个单调递增区间是( )ABCD8某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD9已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像( )A向左平移个单位长度B向右平
3、移个单位长度C向左平移个单位长度D向右平移个单位长度10若双曲线的离心率为,则双曲线的焦距为( )ABC6D811若双曲线:的一条渐近线方程为,则( )ABCD12在中,内角所对的边分别为,若依次成等差数列,则( )A依次成等差数列B依次成等差数列C依次成等差数列D依次成等差数列二、填空题:本题共4小题,每小题5分,共20分。13抛物线的焦点到准线的距离为 14已知点是直线上的一点,将直线绕点逆时针方向旋转角,所得直线方程是,若将它继续旋转角,所得直线方程是,则直线的方程是_.15若的展开式中各项系数之和为32,则展开式中x的系数为_16平面向量与的夹角为,则_三、解答题:共70分。解答应写出
4、文字说明、证明过程或演算步骤。17(12分)在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字16分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表:序号选科情况序号选科情况序号选科情况序号选科情况11341123621156312352235122342223532236323513145
5、232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人?(2)
6、请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望.18(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.19(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,且
7、,求BD的长度.20(12分)某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏(1)若当时,求此时的值;(2)设,且(i)试将表示为的函数,并求出的取值范围;(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值21(12分)已知数列满足(),数列的前项和,(),且,(1)求数列的通项公式:(2)求数列的通项公式(3)设,记是数列的前项和,求正整数,使得对于任意的均有22(10分)的内角,的对边分别为,其面积记为,满足.(1)求;(2)若,求的值.参考
8、答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【详解】当时,显然当时有,经单调性分析知为的第一个极值点又时,均为其极值点函数不能在端点处取得极值,对应极值,故选:C【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题2、C【解析】由等差数列通项
9、公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,解得或(舍),故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质()与前 项和的关系.3、B【解析】根据新运算的定义分别得出2020和20202018的值,可得选项.【详解】由() ,得(+2),又,所以, ,以此类推,202020182018,又,所以, ,以此类推,2020,所以(2020)(20202018),故选:B.【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.4、D【解析】先将函数化为,再由三角函数的性质,逐项判断,即可得出
10、结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.5、C【解析】由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,满足条件,满足条件,满足条件,满足条件,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.6、A【解析】试题分析:由题意可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 成都 航天 中学 2023 高考 仿真 模拟 数学试卷 解析
限制150内