凉山市重点中学2022-2023学年高三第四次模拟考试数学试卷含解析.doc
《凉山市重点中学2022-2023学年高三第四次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《凉山市重点中学2022-2023学年高三第四次模拟考试数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设集合,集合 ,则 =( )ABCDR2若函数函数只有1个零点,则的取值范围是( )ABCD3若两个非零向量、满足,且,则与夹角的余弦值为( )ABCD4某市气象部门根据2018年各月的每天
2、最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A各月最高气温平均值与最低气温平均值总体呈正相关B全年中,2月份的最高气温平均值与最低气温平均值的差值最大C全年中各月最低气温平均值不高于10C的月份有5个D从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势5设,其中a,b是实数,则( )A1B2CD6过圆外一点引圆的两条切线,则经过两切点的直线方程是( )ABCD7若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于( )ABC2或D2或8洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,
3、二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD9设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是( )ABCD10已知是定义是上的奇函数,满足,当时, ,则函数在区间上的零点个数是( )A3B5C7D911函数的图象如图所示,则它的解析式可能是( )ABCD12某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为( )ABC1D二、填空题:本题共4小题,每小题5分,共20分。13下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,
4、兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为_.14已知函数为偶函数,则_.15设数列的前n项和为,且,若,则_.16如图,已知圆内接四边形ABCD,其中,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.18(12分)在直角坐标系中,曲线的参数方程为(为参数,),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方
5、程,并指出其形状;(2)曲线与曲线交于,两点,若,求的值.19(12分)已知.(1)当时,求不等式的解集;(2)若,证明:.20(12分)在ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosAasinB1(1)求A;(2)已知a2,B,求ABC的面积21(12分)已知,分别为内角,的对边,若同时满足下列四个条件中的三个:;.(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应的面积.(若所选条件出现多种可能,则按计算的第一种可能计分)22(10分)已知椭圆:(),四点,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动
6、点,求的正切的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由题,选D考点:集合的运算2、C【解析】转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】有1个零点等价于与的图象有1个交点记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得所以切线斜率为,所以或故选:C【点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.3、A【解析】设平面向量与的夹角为,由已知条件得出,在等式两边平方,利
7、用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.4、D【解析】根据折线图依次判断每个选项得到答案.【详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与
8、最低气温平均值,先上升后下降,故D错误.故选:D.【点睛】本题考查了折线图,意在考查学生的理解能力.5、D【解析】根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.6、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选7、C【解析】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 凉山市 重点中学 2022 2023 学年 第四 模拟考试 数学试卷 解析
限制150内