四川省遂宁市射洪县射洪中学2023年高三考前热身数学试卷含解析.doc
《四川省遂宁市射洪县射洪中学2023年高三考前热身数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省遂宁市射洪县射洪中学2023年高三考前热身数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为ABCD2将4名大学生分配
2、到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( )A18种B36种C54种D72种3赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )ABCD4已知集合,则集合的真子集的个数是( )A8B7C4D35如图,在底面边长为1,高为2的正四棱柱
3、中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为( )A2B3C4D56已知等差数列的公差为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D257在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是26.7,天狼星的星等是1.45,则太阳与天狼星的亮度的比值为( )A1010.1B10.1Clg10.1D1010.18的图象如图所示,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是( )ABCD9( )ABCD10已知复数满足,其中是
4、虚数单位,则复数在复平面中对应的点到原点的距离为( )ABCD11执行程序框图,则输出的数值为( )ABCD12已知复数(为虚数单位)在复平面内对应的点的坐标是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中,的系数为_.14圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为_.15已知,复数且(为虚数单位),则_,_16已知双曲线的左右焦点分别为,过的直线与双曲线左支交于两点,的内切圆的圆心的纵坐标为,则双曲线的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)追求人类与生存环境的和谐发展是中国特
5、色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.18(12分)已知点为椭圆上任意一点,直线与圆 交于,两点,点为椭圆的左焦点.(1)求证:直线与椭圆相切;(2)判断是否为定值,并说明理由.19(12分)已知函数的定义域为.(1)求实数的取值范
6、围;(2)设实数为的最小值,若实数,满足,求的最小值.20(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.21(12分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值22(10分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,
7、只有一项是符合题目要求的。1、D【解析】设胡夫金字塔的底面边长为,由题可得,所以,该金字塔的侧棱长为,所以需要灯带的总长度约为,故选D2、B【解析】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【点睛】本题考查排列组合,属于基础题.3、A【解析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可【详解】在中,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题4、D【解析】转化条件得,利
8、用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,集合的真子集的个数为个.故选:D.【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.5、A【解析】根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.6、D【解析】由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项
9、和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,中最大,最小,又,为三角形的三边长,且最大内角为, 由余弦定理得,设首项为,即得,所以或,又即,舍去,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.7、A【解析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识信息处理能力阅读理解能力以及指数对数运算.8、B【解析】根据图象求得函数的解析式,即可得出函数的解析式,然后求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 遂宁市 射洪县 射洪 中学 2023 年高 考前 热身 数学试卷 解析
限制150内