四川省成都第七中学2022-2023学年高三适应性调研考试数学试题含解析.doc
《四川省成都第七中学2022-2023学年高三适应性调研考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都第七中学2022-2023学年高三适应性调研考试数学试题含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数在区间上的大致图象如图所示,则可能是( )ABCD2在四边形中,点在线段的延长线上,且,点在边所在直线上,则的最大值为( )ABCD3若时,则的取值范围为( )ABCD4已知函数,若对任
2、意的总有恒成立,记的最小值为,则最大值为( )A1BCD5本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )A72种B144种C288种D360种6已知变量,满足不等式组,则的最小值为( )ABCD7已知函数,给出下列四个结论:函数的值域是;函数为奇函数;函数在区间单调递减;若对任意,都有成立,则的最小值为;其中正确结论的个数是( )ABCD8已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点若双曲线的离心率为2,三角形AOB的面积为,则p=( )A1BC2D39当时,
3、函数的图象大致是( )ABCD10在等差数列中,若,则( )A8B12C14D1011某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种.A360B240C150D12012已知函数,若,,则a,b,c的大小关系是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若方程有两个不等实根,则实数的取值范围是_.14已知曲线,点,在曲线上,且以为直径的圆的方程是则_15已知函数,若函数有6个零点,则实数的取值范围是_.16已知函数,则关于的不等
4、式的解集为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.()证明:;()设,若为棱上一点,使得直线与平面所成角的大小为30,求的值.18(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是()求椭圆的标准方程;()过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程19(12分)设函数其中()若曲线在点处切线的倾斜角为,求的值;()已知导函数在区间上存在零点,证明:当时,.20(12分)已知,函数,(是自然对数的底数).(
5、)讨论函数极值点的个数;()若,且命题“,”是假命题,求实数的取值范围.21(12分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余弦值22(10分)如图,已知在三棱锥中,平面,分别为的中点,且.(1)求证:;(2)设平面与交于点,求证:为的中点.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据特殊值及函数的单调性判断即可;【详解】解:当时,无意义,故排除A;又,则,故排除D;对于C,当时,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与
6、排除法是最佳选择,属于基础题.2、A【解析】依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,因为点在线段的延长线上,设,解得,所在直线的方程为 因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.3、D【解析】由题得对恒成立,令,然后分别求出即可得的取值范围.【详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,又在单调递增,的取值范围为.故选:D【点睛】本题主要考查了
7、不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.4、C【解析】对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【详解】对任意的总有恒成立,对恒成立,令,可得令,得当,当,故令,得 当时,当,当时,故选:C.【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.5、B【解析】利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4
8、个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题6、B【解析】先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.7、C【解析】化的解析式为可判断,求出的解析式可判断,由得,结合正弦函数得图象即可判断,由得可判断.【详解】由题意,所以,故正确;为偶函数,故错误;当时,单调递减,故正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故正确.故
9、选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.8、C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,渐近线方程为,求出交点,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;9、B【解析】由,解得,即或,函数有两个零点,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 成都 第七 中学 2022 2023 学年 适应性 调研 考试 数学试题 解析
限制150内