四川省泸州市泸县第五中学2023届高考冲刺数学模拟试题含解析.doc
《四川省泸州市泸县第五中学2023届高考冲刺数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省泸州市泸县第五中学2023届高考冲刺数学模拟试题含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,角、所对的边分别为、,若,则( )ABCD2已知幂函数的图象过点,且,则,的大小关系为( )ABCD3已知,则的大小关系是( )ABCD4已知函数在上有两个零点,则的取值范围是( )A
2、BCD5设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面6设,均为非零的平面向量,则“存在负数,使得”是“”的A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件7已知 若在定义域上恒成立,则的取值范围是( )ABCD82019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A96B84C120D3609在函数:;中,最小正周期为的所有函数为( )ABCD10已知向量,当时,( )ABCD11抛物线的准线与轴的交点为
3、点,过点作直线与抛物线交于、两点,使得是的中点,则直线的斜率为( )ABC1D12设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若随机变量的分布列如表所示,则_,_-10114设向量,且,则_.15若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_16函数的极大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角、所对的边分别为、,角、的度数成等差数列,.(1)若,求的值;(2)求的最大值.18(12分)在ABC中,
4、角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b7,D是BC边上的点,且ACD的面积为,求sinADB.19(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值20(12分)设点分别是椭圆的左,右焦点,为椭圆上任意一点,且的最小值为1(1)求椭圆的方程;(2)如图,直线与轴交于点,过点且斜率的直线与椭圆交于两点,为线段的中点,直线交直线于点,证明:直线21(12分)己知圆F1:(x+1)1 +y1= r1(1r3),圆F1:(x-1)1+y1= (4-r)1(1)证明:圆F1与圆F1
5、有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m0),过点E斜率为k(k0)的直线与()中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由22(10分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用余弦定理角化边
6、整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.2、A【解析】根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.3、B【解析】利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.4、C【解析】对函数求导,对a分类讨论,分别求得函数的单调性及极值,
7、结合端点处的函数值进行判断求解.【详解】 ,.当时,在上单调递增,不合题意.当时,在上单调递减,也不合题意.当时,则时,在上单调递减,时,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题5、B【解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故
8、选B【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误6、B【解析】根据充分条件、必要条件的定义进行分析、判断后可得结论【详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立所以“存在负数,使得”是“”的充分不必要条件故选B【点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确7、C【
9、解析】先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.当时,由,得,解得,此时;当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,则,此时;当时,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.8、B【解析】2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 泸州市 泸县 第五 中学 2023 高考 冲刺 数学模拟 试题 解析
限制150内