孝感市重点中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc
《孝感市重点中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《孝感市重点中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设且,则下列不等式成立的是( )ABCD2中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位用纵式表示,十位、千位、
2、十万位用横式表示,则56846可用算筹表示为( )ABCD3已知函数,则方程的实数根的个数是( )ABCD4不等式组表示的平面区域为,则( )A,B,C,D,5已知双曲线的一条渐近线方程为,则双曲线的离心率为( )ABCD6设函数,若在上有且仅有5个零点,则的取值范围为( )ABCD7已知函数,其中,其图象关于直线对称,对满足的,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()ABCD8在三棱锥中,则三棱锥外接球的表面积是( )ABCD9已知条件,条件直线与直线平行,则是的( )A充要条件B必要不充分条件C充分不必要条件D既不充分也不必要条件10已知某几何体的三视图
3、如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A2B5CD11已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为( )A3B2CD12已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p( )A1BC2D4二、填空题:本题共4小题,每小题5分,共20分。13已知集合,则_14已知函数,若函数恰有4个零点,则实数的取值范围是_15已知F为双曲线的右焦点,过F作C的渐近线的垂线FD,D为垂足,且(O为坐标原点),则C的离心率为_.16已知实数,且由的最大值是_三
4、、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求实数的取值范围18(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,(1)求数列的通项公式;(2)已知数列满足,设数列的前项和为,求大于的最小的正整数的值19(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.20(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.21(12分)选修4-4:坐标系与参数方程:在
5、平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.22(10分)已知抛物线的焦点为,点,点为抛物线上的动点 (1)若的最小值为,求实数的值; (2)设线段的中点为,其中为坐标原点,若,求的面积参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】 项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,
6、时,即不等式不成立,故项错误;项,当,时,即不等式不成立,故项错误综上所述,故选2、B【解析】根据题意表示出各位上的数字所对应的算筹即可得答案【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的故选:【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题3、D【解析】画出函数 ,将方程看作交点个数,运用图象判断根的个数【详解】画出函数令有两解 ,则分别有3个,2个解,故方程的实数根的个数是3+2=5个故选:D【点睛】本题综合考查了函数的图象的运用,分类思
7、想的运用,数学结合的思想判断方程的根,难度较大,属于中档题4、D【解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中 ,设,则,的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.5、B
8、【解析】由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.6、A【解析】由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【详解】当时,在上有且仅有5个零点,.故选:A.【点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.7、B【解析】根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角
9、函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其中,其图像关于直线对称,对满足的,有,.再根据其图像关于直线对称,可得,.,.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.8、B【解析】取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 孝感市 重点中学 2022 2023 学年 高考 全国 统考 预测 数学试卷 解析
限制150内