安徽省巢湖市名校2023年中考猜题数学试卷含解析.doc
《安徽省巢湖市名校2023年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省巢湖市名校2023年中考猜题数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+32化简的结果是()ABCD3如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=
2、DH,则四边形EFGH周长的最小值为()A5B10C10D154如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()ABCD5如图: 在中,平分,平分,且交于,若,则等于( )A75B100 C120 D1256如图,是的外接圆,已知,则的大小为ABCD7对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点8从3、1、2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )ABCD9如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A着B沉C应D冷
3、10如图的立体图形,从左面看可能是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如果不等式组的解集是x2,那么m的取值范围是_12如图,一次函数y=x2的图象与反比例函数y=(k0)的图象相交于A、B两点,与x轴交与点C,若tanAOC=,则k的值为_13已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_14一个圆锥的侧面展开图是半径为6,圆心角为120的扇形,那么这个圆锥的底面圆的半径为_15将直尺和直角三角尺按如图方式摆放若,则_ 16一只蚂蚁从数轴上一点 A出发,爬了7 个单位长度到
4、了+1,则点 A 所表示的数是_17若反比例函数y=的图象位于第一、三象限,则正整数k的值是_三、解答题(共7小题,满分69分)18(10分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长19(5分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万
5、元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?20(8分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.21(10分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风
6、景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,求此时观光船到大桥段的距离的长(参考数据:,).22(10分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”当的半径为1时在点、中,的“特征点”是_;点P在直线上,若点P为的“特征点”求b的取值范围;的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的
7、“特征点”,直接写出点C的横坐标的取值范围23(12分)如图,港口B位于港口A的南偏东37方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45方向上,这时,E处距离港口A有多远?(参考数据:sin 370.60,cos 370.80,tan 370.75)24(14分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班 (用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图请 根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集
8、了_件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是
9、解题关键2、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.3、B【解析】作点E关于BC的对称点E,连接EG交BC于点F,此时四边形EFGH周长取最小值,过点G作GGAB于点G,如图所示,AE=CG,BE=BE,EG=AB=10,GG=AD=5,EG=,C四边形EFGH=2EG=10,故选B【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键4、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面
10、看到的图形判定则可详解:从左边看竖直叠放2个正方形故选:C点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项5、B【解析】根据角平分线的定义推出ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值【详解】解:CE平分ACB,CF平分ACD,ACE=ACB,ACF=ACD,即ECF=(ACB+ACD)=90,EFC为直角三角形,又EFBC,CE平分ACB,CF平分ACD,ECB=MEC=ECM,DCF=CFM=MCF,CM=EM=MF=5,EF=10,由勾股定理可知CE2
11、+CF2=EF2=1故选:B【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出ECF为直角三角形6、A【解析】解:AOB中,OA=OB,ABO=30;AOB=180-2ABO=120;ACB=AOB=60;故选A7、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线
12、与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.8、B【解析】解:画树状图得:共有6种等可能的结果,其中(1,2),(3,2)点落在第四项象限,P点刚好落在第四象限的概率=故选B点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键9、A【解析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对故选
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 安徽省 巢湖市 名校 2023 年中 考猜题 数学试卷 解析
限制150内