四川省成都市嘉祥外国语校2023届中考数学模拟试题含解析.doc
《四川省成都市嘉祥外国语校2023届中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都市嘉祥外国语校2023届中考数学模拟试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()ABCD2如图,一段抛物线:y=x(x5)(0x5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180得C2,
2、 交x轴于点A2;将C2绕点A2旋转180得C3, 交x轴于点A3;如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )A4B4C6D63已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )A1或5B或3C或1D或54我市连续7天的最高气温为:28,27,30,33,30,30,32,这组数据的平均数和众数分别是( )A28,30B30,28C31,30D30,305如图所示是放置在正方形网格中的一个 ,则的值为( )ABCD6某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)78910
3、次数1432A8、8B8、8.5C8、9D8、107如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点设AC2,BD1,APx,AMN的面积为y,则y关于x的函数图象大致形状是( )ABCD8甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地已知A,C两地间的距离为110千米,B,C两地间的距离为100千米甲骑自行车的平均速度比乙快2千米/时结果两人同时到达C地求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时由题意列出方程其中正确的是()ABCD9下列各式正确的是( )ABCD10如图,在边长为的等边三角形ABC中,过
4、点C垂直于BC的直线交ABC的平分线于点P,则点P到边AB所在直线的距离为( )ABCD1二、填空题(共7小题,每小题3分,满分21分)11如图,四边形ABCD是菱形,A60,AB2,扇形EBF的半径为2,圆心角为60,则图中阴影部分的面积是_12如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n个图案是由 个组成的13如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cosEFC的值是 14分解因式:4ax2-ay2=_.15七边形的外角和等于_16因式分解:_17把多项
5、式9x3x分解因式的结果是_三、解答题(共7小题,满分69分)18(10分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且ACx轴.(1)已知A(3,0),B(1,0),AC=OA求抛物线解析式和直线OC的解析式;点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EGx轴于G,连CG,BF,求证:CGBF19(5分)如图,经过原点的抛物线y=x2+
6、2mx(m0)与x轴的另一个交点为A,过点P(1,m)作直线PAx轴于点M,交抛物线于点B记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP(I)当m=3时,求点A的坐标及BC的长;(II)当m1时,连接CA,若CACP,求m的值;(III)过点P作PEPC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标20(8分)先化简,再求值:,其中与2,3构成的三边,且为整数.21(10分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移
7、动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC2.7米,CD11.5米,CDE120,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度(结果保留根号)22(10分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示)(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;(3)该同学从 5 个项目中任选两个,则两个项目都
8、是径赛项目的概率 P2 为 23(12分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s)(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围24(14分)已知关于x的一元二次方程x2(2m+3)x+m2+21(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x2231+|x1x2|,求实数m
9、的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答【详解】甲、乙两人分别以4m/s和5m/s的速度,两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s1m/s=20m,故选B【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答2、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由20175=4032,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把
10、P(2018,m)代入即可详解:当y=0时,x(x5)=0,解得x1=0,x2=5,则A1(5,0),OA1=5,将C1绕点A1旋转180得C2,交x轴于点A2;将C2绕点A2旋转180得C3,交x轴于点A3;如此进行下去,得到一“波浪线”,A1A2=A2A3=OA1=5,抛物线C404的解析式为y=(x5403)(x5404),即y=(x2015)(x2020),当x=2018时,y=(20182015)(20182020)=1,即m=1故选C点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键3、D【解析】由解析式可知该函数在时取得最小值0,抛物线开口向上,当
11、时,y随x的增大而增大;当时,y随x的增大而减小;根据时,函数的最小值为4可分如下三种情况:若,时,y取得最小值4;若-1h3时,当x=h时,y取得最小值为0,不是4;若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可【详解】解:当xh时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,若,当时,y取得最小值4,可得:4,解得或(舍去);若-1h3时,当x=h时,y取得最小值为0,不是4,此种情况不符合题意,舍去;若-1x3h,当x=3时,y取得最小值4,可得:,解得:h=5或h=1(舍)综上所述,h的值为-3或5,故选:D【点睛】本题主要考查二次函数的性质和最值,
12、根据二次函数的性质和最值分类讨论是解题的关键4、D【解析】试题分析:数据28,27,30,33,30,30,32的平均数是(28+27+30+33+30+30+32)7=30,30出现了3次,出现的次数最多,则众数是30;故选D考点:众数;算术平均数5、D【解析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案【详解】解:过点A向CB引垂线,与CB交于D,ABD是直角三角形, BD=4,AD=2,tanABC= 故选:D【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做A的正切,记作tanA6、B【解析】根据众数和中
13、位数的概念求解【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为=8.5(环),故选:B【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数7、C【解析】AMN的面积=APMN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0x1;(2)1x2;解:(1)当0x1时,如图,在菱形A
14、BCD中,AC=2,BD=1,AO=1,且ACBD;MNAC,MNBD;AMNABD,=,即,=,MN=x;y=APMN=x2(0x1),0,函数图象开口向上;(2)当1x2,如图,同理证得,CDBCNM,=,即=,MN=2-x;y=APMN=x(2-x),y=-x2+x;-0,函数图象开口向下;综上答案C的图象大致符合故选C本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想8、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 成都市 嘉祥 外国语 2023 中考 数学模拟 试题 解析
限制150内