山东省东营市垦利县第一中学2023届高三第一次模拟考试数学试卷含解析.doc
《山东省东营市垦利县第一中学2023届高三第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省东营市垦利县第一中学2023届高三第一次模拟考试数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,垂足为,若的面积为,则到的距离为( )A
2、BC8D62已知i为虚数单位,则( )ABCD3设复数满足(为虚数单位),则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限4设是虚数单位,则( )ABCD52019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,
3、一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )ABCD6若(),则( )A0或2B0C1或2D17在三棱锥中,且分别是棱,的中点,下面四个结论:;平面;三棱锥的体积的最大值为;与一定不垂直.其中所有正确命题的序号是( )ABCD8已知函数为奇函数,且,则( )A2B5C1D39复数的虚部是 ( )ABCD10已知实数满足约束条件,则的最小值为( )A-5B2C7D1
4、111已知的值域为,当正数a,b满足时,则的最小值为( )AB5CD912M、N是曲线y=sinx与曲线y=cosx的两个不同的交点,则|MN|的最小值为()ABCD2二、填空题:本题共4小题,每小题5分,共20分。13三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有_种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).14已知为抛物线:的焦点,过作两条互相垂直的直线,直线与交于、两点,直线与交于、两点,则的最小值为_15如图,在长方体中,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是_.16若四棱锥的侧面内有
5、一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长. 18(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.(1)求证:平面;(2)求二面角的正弦值.19(12分)已知抛物线的准线过椭圆C:(ab0)的左焦点F,且点F到直线l:(c为
6、椭圆焦距的一半)的距离为4.(1)求椭圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.20(12分)已知函数.(1)求不等式的解集;(2)若存在实数,使得不等式成立,求实数的取值范围.21(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,均为正实数,且满足.证明:.22(10分)记数列的前项和为,已知成等差数列.(1)证明:数列是等比数列,并求的通项公式;(2)记数列的前项和为,求.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解
7、析】作,垂足为,过点N作,垂足为G,设,则,结合图形可得,从而可求出,进而可求得,由的面积即可求出,再结合为线段的中点,即可求出到的距离【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,所以在中,所以,所以,在中,所以,所以,所以 解得,因为,所以为线段的中点,所以F到l的距离为故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题2、A【解析】根据复数乘除运算法则,即可求解.【详解】.故选:A.【点睛】本题考查复数代数运算,属于基础题题.3、A【解析】由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【详解】由得:,对应的点的坐
8、标为,位于第一象限.故选:.【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.4、A【解析】利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.5、A【解析】根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,.即设,则当且仅当即时取等号,即.故选:A【点睛】本题主要考查概率的计算,涉及相互独立事件
9、同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.6、A【解析】利用复数的模的运算列方程,解方程求得的值.【详解】由于(),所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.7、D【解析】通过证明平面,证得;通过证明,证得平面;求得三棱锥体积的最大值,由此判断的正确性;利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,又,所以平面,所以,故正确;因为,所以平面,故正确;当平面与平面垂直时,最大,最大值为,故错误;若与垂直,又因为,所以平面,所以,又,所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 东营 垦利县 第一 中学 2023 届高三 第一次 模拟考试 数学试卷 解析
限制150内