《四川省成都崇庆中学2022-2023学年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都崇庆中学2022-2023学年中考五模数学试题含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1不等式组的解集在数轴上可表示为()ABCD2抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x23某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分
2、数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).A众数B中位数C平均数D方差4如图,ABC是O的内接三角形,AC是O的直径,C=50,ABC的平分线BD交O于点D,则BAD的度数是( )A45B85C90D955如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM4,AB6,则BD的长为( )A4B5C8D106对于下列调查:对从某国进口的香蕉进行检验检疫;审查某教科书稿;中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A B C D7随着“中国诗词大会”节目的热播,唐诗宋词精选一书也随之热销如果一次性购买10本以上,超过10本的那部分书的价格将打
3、折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A一次性购买数量不超过10本时,销售价格为20元/本Ba520C一次性购买10本以上时,超过10本的那部分书的价格打八折D一次性购买20本比分两次购买且每次购买10本少花80元8如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A4B3C2D19下列运算正确的是( )ABCD10如图,在矩形ABCD中,O为AC中点,EF过O点且EFAC分别交DC于F,交AB于点E,点G是AE中点且AOG=30,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(
4、3)OGE是等边三角形;(4). A1B2C3D4二、填空题(共7小题,每小题3分,满分21分)11如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是_12从2,1,1,2四个数中,随机抽取两个数相乘,积为大于4小于2的概率是_13图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙)图乙种,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为_cm14如图,在ABC中,A=70
5、,B=50,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若EFC为直角三角形,则BDF的度数为_15如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MNAQ交BC于N点,作NPBD于点P,连接NQ,下列结论:AM=MN;MP=BD;BN+DQ=NQ;为定值。其中一定成立的是_.16已知,则_17计算:_三、解答题(共7小题,满分69分)18(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同求
6、小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率19(5分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)ABFDCE;四边形ABCD是矩形20(8分)如图,已知在ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的P与边BC的另一个交点为D,联结PD、AD(1)求ABC的面积;(2)设PB=x,APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果APD是直角三角形,求PB的长21(10分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AEBF于点G,求
7、证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AEBF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系; 22(10分)如图,BC是路边坡角为30,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角DAN和DBN分别是37和60(图中的点A、B、C、D、M、N均在同一平面内,CMAN)求灯杆CD的高度;求AB的长度(结果精确到0.1米)(参考数据:=1.1sin37060,cos370.80,tan
8、370.75)23(12分)如图,在ABC中,ABAC4,A36在AC边上确定点D,使得ABD与BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)24(14分)如图,ABC中,A=90,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60得到点E,连接CE.(1)当点E在BC边上时,画出图形并求出BAD的度数;(2)当CDE为等腰三角形时,求BAD的度数;(3)在点D的运动过程中,求CE的最小值. (参考数值:sin75=, cos75=,tan75=)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】先求出每个不等式的解集,再
9、求出不等式组的解集即可.【详解】解: 不等式得:x1,解不等式得:x2,不等式组的解集为1x2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.2、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键3、B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和
10、中位数就可以知道是否进入决赛了故选B点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数4、B【解析】解:AC是O的直径,ABC=90,C=50,BAC=40,ABC的平分线BD交O于点D,ABD=DBC=45,CAD=DBC=45,BAD=BAC+CAD=40+45=85,故选B【点睛】本题考查圆周角定理;圆心角、弧、弦的关系5、D【解析】利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度【详解】解:矩形ABCD的对角线AC,BD相交于点O,BAD=90,点O是线段BD的中点,点M是AB的中点,OM是ABD的中位线,AD=2OM=1在直角ABD中
11、,由勾股定理知:BD=故选:D【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键6、B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】对从某国进口的香蕉进行检验检疫适合抽样调查;审查某教科书稿适合全面调查;中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查7
12、、D【解析】A、根据单价总价数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价总价数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其前十本的单价即可得出C正确;B、根据总价200+超过10本的那部分书的数量16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误此题得解【详解】解:A、2001020(元/本),一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、(840200)(5010)16(元/本),16200.8,一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、200
13、+16(3010)520(元),a520,B选项正确;D、200220016(2010)40(元),一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误故选D【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键8、A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为 (66)2+(76)2+(36)2+(96)2+(56)2=4,故选A点睛:此题考查了平均数和方差的定义平均数是所有数据的和除以数据的个数方差
14、是一组数据中各数据与它们的平均数的差的平方的平均数9、D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.10、C【解析】EFAC,点G是AE中点,OG=AG=GE=AE,AOG=30,OAG=AOG=30,GOE=90-AOG=90-30=60,OGE是等边三角形,故(3)正确;设AE=2a,则O
15、E=OG=a,由勾股定理得,AO=,O为AC中点,AC=2AO=2,BC=AC=,在RtABC中,由勾股定理得,AB=3a,四边形ABCD是矩形,CD=AB=3a,DC=3OG,故(1)正确;OG=a,BC=,OGBC,故(2)错误;SAOE=a=,SABCD=3a=32,SAOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与
16、圆O相交,圆心距满足关系式:|R-r|dR+r,求得圆D与圆O的半径代入计算即可.【详解】连接OA、OD,过O点作ONAE,OMAF.AN=AE=1,AM=AF=2,MD=AD-AM=3四边形ABCD是矩形BAD=ANO=AMO=90,四边形OMAN是矩形OM=AN=1OA=,OD=以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.12、【解析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4
17、-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,积为大于-4小于2的概率为=,故答案为【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比13、【解析】试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:4=.考点:菱形的性质.14、110或50【解析】由内角和定理得出C=60,根据翻折变换的性质知DFE=A=70,再分EFC
18、=90和FEC=90两种情况,先求出DFC度数,继而由BDF=DFCB可得答案【详解】ABC中,A=70、B=50,C=180AB=60,由翻折性质知DFE=A=70,分两种情况讨论:当EFC=90时,DFC=DFE+EFC=160,则BDF=DFCB=110;当FEC=90时,EFC=180FECC=30,DFC=DFE+EFC=100,BDF=DFCB=50;综上:BDF的度数为110或50故答案为110或50【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键15、【解析】如图1,作AUNQ于U,交BD于H,连接AN
19、,AC,AMN=ABC=90,A,B,N,M四点共圆,NAM=DBC=45,ANM=ABD=45,ANM=NAM=45,AM=MN;由同角的余角相等知,HAM=PMN,RtAHMRtMPN,MP=AH=AC=BD;BAN+QAD=NAQ=45,在NAM作AU=AB=AD,且使BAN=NAU,DAQ=QAU,ABNUAN,DAQUAQ,有UAN=UAQ,BN=NU,DQ=UQ,点U在NQ上,有BN+DQ=QU+UN=NQ;如图2,作MSAB,垂足为S,作MWBC,垂足为W,点M是对角线BD上的点,四边形SMWB是正方形,有MS=MW=BS=BW,AMSNMWAS=NW,AB+BN=SB+BW=2
20、BW,BW:BM=1: ,.故答案为:点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.16、34【解析】,=,故答案为34.17、【解析】根据异分母分式加减法法则计算即可【详解】原式故答案为:【点睛】本题考查了分式的加减,关键是掌握分式加减的计算法则三、解答题(共7小题,满分69分)18、(1);(2)【解析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方
21、游玩的情况,再利用概率公式即可求得答案【详解】(1)小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,小明选择去白鹿原游玩的概率;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率19、(1)见解析;(2)见解析.【解析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC利用“SSS”得ABFDCE(2)平
22、行四边形的性质得到两边平行,从而B+C=180利用全等得B=C,从而得到一个直角,问题得证.【详解】(1)BE=CF,BF=BE+EF,CE=CF+EF,BF=CE四边形ABCD是平行四边形,AB=DC在ABF和DCE中,AB=DC,BF=CE,AF=DE,ABFDCE(2)ABFDCE,B=C四边形ABCD是平行四边形,ABCDB+C=180B=C=90平行四边形ABCD是矩形20、(1)12(2)y=(0x5)(3)或【解析】试题分析:(1)过点A作AHBC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;(2)先证明BPDBAC,得
23、到=,再根据 ,代入相关的量即可得;(3)分情况进行讨论即可得.试题解析:(1)过点A作AHBC于点H ,则AHB=90,cosB= ,cosB=,AB=5,BH=4,AH=3,AB=AC,BC=2BH=8,SABC=83=12(2)PB=PD,B=PDB,AB=AC,B=C,C=PDB,BPDBAC, ,即,解得=, , ,解得y=(0x5); (3)APD90,过C作CEAB交BA延长线于E,可得cosCAE= ,当ADP=90时,cosAPD=cosCAE=,即 ,解得x=; 当PAD=90时, ,解得x=,综上所述,PB=或.【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高
24、相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.21、(1)证明见解析;(2)AE=BF,(3)AE=BF;【解析】(1)根据正方形的性质,可得ABC与C的关系,AB与BC的关系,根据两直线垂直,可得AMB的度数,根据直角三角形锐角的关系,可得ABM与BAM的关系,根据同角的余角相等,可得BAM与CBF的关系,根据ASA,可得ABEBCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到ABC=C,由余角的性质得到BAM=CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF证明方法类似(2);【详解】(1)证明:四边形ABCD是正方形,ABC=C,AB
25、=BCAEBF,AMB=BAM+ABM=90,ABM+CBF=90,BAM=CBF在ABE和BCF中,ABEBCF(ASA),AE=BF;(2)解:如图2中,结论:AE=BF,理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90,ABM+CBF=90,BAM=CBF,ABEBCF,AE=BF(3)结论:AE=BF理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90,ABM+CBF=90,BAM=CBF,ABEBCF,AE=BF【点睛】本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等
26、三角形或相似三角形的判定和性质是解题的关键22、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H只要证明BC=CD即可;(2)在RtBCH中,求出BH、CH,在 RtADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,DBH=60,DHB=90,BDH=30,CBH=30,CBD=BDC=30,BC=CD=10(米);(2)在RtBCH中,CH=BC=5,BH=58.65,DH=15,在RtADH中,AH=20,AB=AHBH=208.65=11.4(米)【点睛】本题考查解直角三角形的应用坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23
27、、【解析】作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长【详解】如图所示,作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,ACBD36,CC,ABCBDC,设BCBDADx,则CD4x,BC2ACCD,x24(4x),解得x1,x2(舍去),BC的长【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作24、(1)BAD=15;(2)BAC=45或BAD =60;(3)CE=【解析】(1)如图1中,当点E在BC上时
28、只要证明BADCAE,即可推出BAD=CAE=(90-60)=15;(2)分两种情形求解如图2中,当BD=DC时,易知AD=CD=DE,此时DEC是等腰三角形如图3中,当CD=CE时,DEC是等腰三角形;(3)如图4中,当E在BC上时,E记为E,D记为D,连接EE作CMEE于M,ENAC于N,DE交AE于O首先确定点E的运动轨迹是直线EE(过点E与BC成60角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).【详解】解:(1)如图1中,当点E在BC上时AD=AE,DAE=60,ADE是等边三角形,ADE=AED=60,ADB=AEC=120,AB=AC,BAC=90,B=C=45,在
29、ABD和ACE中,B=C,ADB=AEC,AB=AC,BADCAE,BAD=CAE=(90-60)=15(2)如图2中,当BD=DC时,易知AD=CD=DE,此时DEC是等腰三角形,BAD=BAC=45如图3中,当CD=CE时,DEC是等腰三角形AD=AE,AC垂直平分线段DE,ACD=ACE=45,DCE=90,EDC=CED=45,B=45,EDC=B,DEAB,BAD=ADE=60(3)如图4中,当E在BC上时,E记为E,D记为D,连接EE作CMEE于M,ENAC于N,DE交AE于OAOE=DOE,AED=AEO,AOEDOE,AO:OD=EO:OE,AO:EO=OD:OE,AOD=EOE,AODEOE,EEO=ADO=60,点E的运动轨迹是直线EE(过点E与BC成60角的直线上),EC的最小值即为线段CM的长(垂线段最短),设EN=CN=a,则AN=4-a,在RtANE中,tan75=AN:NE,2+=,a=2-,CE=CN=2-在RtCEM中,CM=CEcos30=,CE的最小值为【点睛】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题
限制150内