山东省济宁市任城区达标名校2023年中考四模数学试题含解析.doc
《山东省济宁市任城区达标名校2023年中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省济宁市任城区达标名校2023年中考四模数学试题含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )Ay=(x2)2+3 By=(x2)23 Cy=(x+2)2+3 Dy=(x+2)232已知a为
2、整数,且a 1时, y 110如图,在四边形ABCD中,ADBC,ABC+DCB=90,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1若S2=48,S1=9,则S1的值为()A18B12C9D1二、填空题(本大题共6个小题,每小题3分,共18分)11抛物线y=x2+4x1的顶点坐标为 12已知,如图,ABC中,DEFGBC,ADDFFB123,若EG3,则AC 13如图,已知反比例函数y=(k为常数,k0)的图象经过点A,过A点作ABx轴,垂足为B,若AOB的面积为1,则k=_14甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2
3、0142018年,这两家公司中销售量增长较快的是_公司(填“甲”或“乙”)15如图,如果四边形ABCD中,ADBC6,点E、F、G分别是AB、BD、AC的中点,那么EGF面积的最大值为_16将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm三、解答题(共8题,共72分)17(8分)先化简,再求值:,其中a满足a2+2a1118(8分)如图1,在直角梯形ABCD中,动点P从B点出发,沿BCDA匀速运动,设点P运动的路程为x,ABP的面积为y,图象如图2所示(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P运动的路程x4时,ABP的面积为y ;(3)求AB的长和梯形ABC
4、D的面积19(8分)如图,菱形ABCD的边长为20cm,ABC120,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿AB的路线向点B运动;过点P作PQBD,与AC相交于点Q,设运动时间为t秒,0t1(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由20(8分)综合与实践:概念理解:将ABC 绕
5、点 A 按逆时针方向旋转,旋转角记为 (090),并使各边长变为原来的 n 倍,得到ABC,如图,我们将这种变换记为,n,: 问题解决:(2)如图,在ABC 中,BAC=30,ACB=90,对ABC 作变换,n得到ABC,使点 B,C,C在同一直线上,且四边形 ABBC为矩形,求 和 n 的值拓广探索:(3)在ABC 中,BAC=45,ACB=90,对ABC作变换 得到ABC,则四边形 ABBC为正方形21(8分)如图,已知A(a,4),B(4,b)是一次函数与反比例函数图象的两个交点(1)若a1,求反比例函数的解析式及b的值;(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数
6、大于一次函数的值?(3)若ab4,求一次函数的函数解析式22(10分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?23(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙
7、两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?24如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,指出点P、Q各位于哪个象限?并简要说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式【详解】解
8、:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1故选:D【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式2、B【解析】直接利用,接近的整数是1,进而得出答案【详解】a为整数,且a,a=1故选:【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键3、D【解析】直接利用特殊角的三角函
9、数值求解即可【详解】tan30,故选:D【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键4、D【解析】试题分析:观察函数图象得到当2x0或x2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值故选D考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用5、B【解析】由S阴影=SOAE-S扇形OAF,分别求出SOAE、S扇形OAF即可;【详解】连接OA,ODOFAD,AC=CD=,在RtOAC中,由tanAOC=知,AOC=60,则DOA=120,OA=2,RtOAE中,AOE=60,OA=2AE=2,S阴影=SOAE-S扇形OAF=
10、22-.故选B.【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可6、B【解析】根据题意画出图形,连接AO并延长交BC于点D,则ADBC,设OD=x,由三角形重心的性质得AD=3x, 利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可【详解】如图, 连接AO并延长交BC于点D,则ADBC,设OD=x,则AD=3x, tanBAD=,BD= tan30AD=x,BC=2BD=2x, ,2x3x=3,x1所以该圆的内接正三边
11、形的边心距为1,故选B【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距7、B【解析】抛物线C:y=x2+2x3=(x+1)24,抛物线对称轴为x=1抛物线与y轴的交点为A(0,3)则与A点以对称轴对称的点是B(2,3)若将抛物线C平移到C,并且C,C关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称则B点平移后坐标应为(4,3),因此将抛物线C向右平移4个单位故选B8、D【解析】A.32+4+2+1+1=40(人),故A正确;B. (3032+294+282+26+18)40=29.4(分),
12、故B正确;C. 成绩是30分的人有32人,最多,故C 正确;D. 该班学生这次考试成绩的中位数为30分,故D错误;9、B【解析】分析:直接利用反比例函数的性质进而分析得出答案详解:A反比例函数y=,图象经过点(1,1),故此选项错误; B反比例函数y=,图象在第一、三象限,故此选项正确; C反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误; D反比例函数y=,当x1时,0y1,故此选项错误 故选B点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键10、D【解析】过A作AHCD交BC于H,根据题意得到BAE=90,根据勾股定理计算即可【详解】S2=48,BC
13、=4,过A作AHCD交BC于H,则AHB=DCBADBC,四边形AHCD是平行四边形,CH=BH=AD=2,AH=CD=1ABC+DCB=90,AHB+ABC=90,BAH=90,AB2=BH2AH2=1,S1=1故选D【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、(2,3)【解析】试题分析:利用配方法将抛物线的解析式y=x2+4x1转化为顶点式解析式y=(x2)2+3,然后求其顶点坐标为:(2,3)考点:二次函数的性质12、1【解析】试题分析:根据DEFGBC可得ADEAFGABC,根据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 济宁市 城区 达标 名校 2023 年中 考四模 数学试题 解析
限制150内