天津一中2023年高考数学三模试卷含解析.doc
《天津一中2023年高考数学三模试卷含解析.doc》由会员分享,可在线阅读,更多相关《天津一中2023年高考数学三模试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若集合,则ABCD2若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为( )A2BCD3已知复数满足,则( )ABCD4
2、过抛物线的焦点且与的对称轴垂直的直线与交于,两点,为的准线上的一点,则的面积为( )A1B2C4D85已知全集为,集合,则( )ABCD6如图,长方体中,点T在棱上,若平面.则( )A1BC2D7已知函数()的最小值为0,则( )ABCD8如图,在平行四边形中,对角线与交于点,且,则( )ABCD9金庸先生的武侠小说射雕英雄传第12回中有这样一段情节,“洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为( )A20B24C25D2610已知等差数
3、列中,则数列的前10项和( )A100B210C380D40011某程序框图如图所示,若输出的,则判断框内为( )ABCD12函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 二、填空题:本题共4小题,每小题5分,共20分。13如图,直线是曲线在处的切线,则_.14已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是_.15 “”是“”的_条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)16已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为_.三、解答题:共70分。解答应写出文字
4、说明、证明过程或演算步骤。17(12分)已知等比数列,其公比,且满足,和的等差中项是1()求数列的通项公式;()若,是数列的前项和,求使成立的正整数的值18(12分)如图,在四棱锥中,底面为正方形,、分别为、的中点(1)求证:平面;(2)求直线与平面所成角的正弦值19(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:点的极角;面积的取值范围.20(12分)
5、已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.21(12分)已知变换将平面上的点,分别变换为点,设变换对应的矩阵为(1)求矩阵;(2)求矩阵的特征值22(10分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,所以,故选C.【点睛】本题考
6、查集合的交运算,属于容易题.2、B【解析】由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直双曲线的渐近线方程为,得则离心率故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.3、A【解析】由复数的运算法则计算【详解】因为,所以故选:A【点睛】本题考查复数的运算属于简单题4、C【解析】设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积【详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,是与的交点
7、,又轴,可设点坐标为,代入,解得,又点在准线上,设过点的的垂线与交于点,.故应选C.【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值本题难度一般5、D【解析】对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,再由交集的定义求解即可.【详解】,.故选:D【点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.6、D【解析】根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,点T在棱上,若平面.则,则,所以, 则,所以,故选:D.【点睛】本题考查了直线
8、与平面垂直的性质应用,平面向量数量积的运算,属于基础题.7、C【解析】设,计算可得,再结合图像即可求出答案.【详解】设,则,则,由于函数的最小值为0,作出函数的大致图像, 结合图像,得,所以.故选:C【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.8、C【解析】画出图形,以为基底将向量进行分解后可得结果【详解】画出图形,如下图选取为基底,则,故选C【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便(2)利用已知向量表示未知向量,实质就是利用平行四边
9、形法则或三角形法则进行向量的加减运算或数乘运算9、D【解析】利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.10、B【解析】设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.11、C【解析】程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前11第一圈24是第二圈311是第三圈 426是第四圈 557是第五圈 6120否
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 天津 一中 2023 年高 数学 试卷 解析
限制150内