山东省德州市陵城区第一中学2022-2023学年高三二诊模拟考试数学试卷含解析.doc
《山东省德州市陵城区第一中学2022-2023学年高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省德州市陵城区第一中学2022-2023学年高三二诊模拟考试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设复数,则=( )A1BCD2已知函数,若有2个零点,则实数的取值范围为( )ABCD3对两个变量进行回归分析,给出如下一组样本数据:,下列函数模型中拟合较好的是( )ABCD4若
2、x(0,1),alnx,b,celnx,则a,b,c的大小关系为()AbcaBcbaCabcDbac5已知双曲线的左、右焦点分别为,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为( )ABCD6某三棱锥的三视图如图所示,则该三棱锥的体积为ABC2D7某几何体的三视图如图所示,则该几何体的体积为()ABCD8在原点附近的部分图象大概是( )ABCD9若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )ABCD10命题“”的否定为( )ABCD11双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,
3、则双曲线的渐近线方程为( )ABCD12的展开式中,项的系数为( )A23B17C20D63二、填空题:本题共4小题,每小题5分,共20分。13已知是函数的极大值点,则的取值范围是_14若,且,则的最小值是_.15已知数列的前项和为,则满足的正整数的值为_.16已知,且,若恒成立,则实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)求证:在区间上有且仅有一个零点,且;(2)若当时,不等式恒成立,求证:.18(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.()
4、求直线的直角坐标方程与曲线的普通方程;()已知点设直线与曲线相交于两点,求的值.19(12分)已知,函数,(是自然对数的底数).()讨论函数极值点的个数;()若,且命题“,”是假命题,求实数的取值范围.20(12分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.21(12分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.()设直线与曲线交于,两点,求;()若点为曲线上任意一点,求的取值范围.22(10分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作
5、抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据复数的除法运算,代入化简即可求解.【详解】复数,则故选:A.【点睛】本题考查了复数的除法运算与化简求值,属于基础题.2、C【解析】令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,令,可得,当时,函数在上单调递增;当时,函数在上单调递减.当时,若直线和有两个交点,则.实数的取值范围是.故选:C.【点睛】本题主要考查了根据零点
6、求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.3、D【解析】作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好4、A【解析】利用指数函数、对数函数的单调性直接求解【详解】x(0,1),alnx0,b()lnx()01,0celnxe01,a,b,c的大小关系为bca故选:A【点睛】本题考查三个数的大小的判
7、断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题5、C【解析】由双曲线定义得,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.由,得. 由,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.6、A【解析】 由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为 高为的三棱锥,所以三棱锥的体积为,
8、故选A7、A【解析】利用已知条件画出几何体的直观图,然后求解几何体的体积【详解】几何体的三视图的直观图如图所示,则该几何体的体积为:故选:【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键8、A【解析】分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,则函数为奇函数,排除C、D选项;当时,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.9、D【解析】求出直线的斜率和方程,代
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 德州市 城区 第一 中学 2022 2023 学年 高三二诊 模拟考试 数学试卷 解析
限制150内