山东省枣庄十八中2023届高考数学考前最后一卷预测卷含解析.doc
《山东省枣庄十八中2023届高考数学考前最后一卷预测卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省枣庄十八中2023届高考数学考前最后一卷预测卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1过抛物线的焦点的直线交该抛物线于,两点,为坐标原点.若,则直线的斜率为( )ABCD2设某大学的女生体
2、重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1cm,则其体重约增加0.85kgD若该大学某女生身高为170cm,则可断定其体重比为58.79kg3已知函数,且的图象经过第一、二、四象限,则,的大小关系为( )ABCD4已知向量,设函数,则下列关于函数的性质的描述正确的是A关于直线对称B关于点对称C周期为D在上是增函数5设数列是等差数列,.则这个数列的前7项和等于( )A12B
3、21C24D366已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )ABCD7已知复数,则对应的点在复平面内位于( )A第一象限B第二象限C第三象限D第四象限8已知函数(,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9定义,已知函数,则函数的最小值为( )ABCD10已知是定义在上的奇函数,且当时,若,则的解集是( )ABCD11已知f(x)=是定义在R上的奇函数,则不等式f(x-3)f(9-x2)的解集为( )A(-2,6)B(-6,2)C(-4,3)D(-3,4)12
4、已知,且,则的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设函数,当时,记最大值为,则的最小值为_.14已知,满足,则的展开式中的系数为_.15执行以下语句后,打印纸上打印出的结果应是:_16已知是定义在上的奇函数,当时,则不等式的解集用区间表示为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积18(12分)已知数列,其前项和为,满足,其中,
5、.若,(),求证:数列是等比数列;若数列是等比数列,求,的值;若,且,求证:数列是等差数列.19(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.20(12分)已知函数,()求的最小正周期;()求在上的最小值和最大值21(12分)已知矩形中,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.22(10分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直
6、线分别交椭圆于和,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据抛物线的定义,结合,求出的坐标,然后求出的斜率即可【详解】解:抛物线的焦点,准线方程为,设,则,故,此时,即则直线的斜率故选:D【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题2、D【解析】根据y与x的线性回归方程为 y=0.85x85.71,则=0.850,y 与 x 具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;该大学某女生身高为 17
7、0cm,预测其体重约为0.8517085.71=58.79kg,D错误故选D3、C【解析】根据题意,得,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.4、D【解析】当时,f(x)不关于直线对称;当时, ,f(x)关于点对称;f(x)得周期,当时, ,f(x)在上是增函数本题选择D选项.5、B【解析】根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是
8、等差数列,所以,即,又,所以,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.6、C【解析】由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【详解】先画出图形,由球心到各点距离相等可得,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题7、A【解析】利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,
9、考查复数对应点的坐标所在象限,属于基础题.8、B【解析】先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,再由, 取,.将函数的图象向右平移个单位长度,得到函数的图象,.,令,则,显然,是的必要不充分条件.故选:B【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.9、A【解析】根据分段函数的定义得,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 枣庄 十八 2023 高考 数学 考前 最后 一卷 预测 解析
限制150内