山东省济南市济阳县2023届中考数学押题试卷含解析.doc
《山东省济南市济阳县2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省济南市济阳县2023届中考数学押题试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()ABCD2下列函数中,二次函数是( )Ay4x+5Byx(2x3)Cy(x+4)2x2Dy3如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐
2、标是( ) ABCD4在,,则的值为( )ABCD5如图是某个几何体的展开图,该几何体是( )A三棱柱B圆锥C四棱柱D圆柱6如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )ABCD7将抛物线yx2x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()Ayx2+3x+6Byx2+3xCyx25x+10Dyx25x+48二次函数y=ax1+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c3b;(3)7a3b+1c0;(4)若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上
3、,则y1y3y1;(5)若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x115x1其中正确的结论有()A1个B3个C4个D5个9某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A八(2)班的总分高于八(1)班B八(2)班的成绩比八(1)班稳定C两个班的最高分在八(2)班D八(2)班的成绩集中在中上游10滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:
4、车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A10分钟B13分钟C15分钟D19分钟11下面的图形中,既是轴对称图形又是中心对称图形的是( ) A B C D12如图是二次函数图象的一部分,其对称轴为x=1,且过点(3,0)下列说法:abc0;1ab=0;4a+1b+c0;若(5,y1),(,y1)是抛物线上两点
5、,则y1y1其中说法正确的是( )A B C D二、填空题:(本大题共6个小题,每小题4分,共24分)13因式分解:3a36a2b+3ab2_14如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积15某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_16竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第_秒时离地面最高17关于x的一元二次方程x2+bx+c0的两根为x11,x22,则x2+bx+c分解因式
6、的结果为_18已知扇形的弧长为,圆心角为45,则扇形半径为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(1)问题发现:如图,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;(2)深入探究:如图,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使ABC=AMN,AM=MN,连接CN,试探究ABC与ACN的数量关系,并说明理由;(3)拓展延伸:如图,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形
7、AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长20(6分)如图,ABCD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若ACD=110,求CMA的度数_21(6分)如图,是等腰三角形,.(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);(2)判断是否为等腰三角形,并说明理由.22(8分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲691088乙57899丙59
8、10511(1)根据上表中的数据,将下表补充完整:统计值数值人员平均数(万元)众数(万元)中位数(万元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.23(8分)已知四边形ABCD是O的内接四边形,AC是O的直径,DEAB,垂足为E(1)延长DE交O于点F,延长DC,FB交于点P,如图1求证:PC=PB;(2)过点B作BGAD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2若AB= ,DH=1,OHD=80,求BDE的大小24(10分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级
9、时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率25(10分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示(1)甲车间每天加工零件为_件,图中d值为_(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式(3)甲车间加
10、工多长时间时,两车间加工零件总数为1000件?26(12分)解不等式组并在数轴上表示解集27(12分)已知:关于x的方程x2(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D【点睛】本题考查的
11、是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变此题比较简单,但计算时一定要细心2、B【解析】A. y=-4x+5是一次函数,故此选项错误;B.y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;C.y=(x+4)2x2=8x+16,为一次函数,故此选项错误;D.y=是组合函数,故此选项错误.故选B.3、D【解析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|AP-BP|AB,延长AB交x轴于P,当P在P点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交
12、点坐标即可【详解】把,代入反比例函数 ,得:,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,即此时线段与线段之差达到最大,设直线的解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,即,故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度4、A【解析】本题可以利用锐角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 5、A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱【详解
13、】解:观察图形可知,这个几何体是三棱柱故选A【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键6、B【解析】根据旋转的性质可得ACAC,然后判断出ACA是等腰直角三角形,根据等腰直角三角形的性质可得CAA45,再根据三角形的一个外角等于与它不相邻的两个内角的和求出ABC,最后根据旋转的性质可得BABC【详解】解:RtABC绕直角顶点C顺时针旋转90得到ABC,ACAC,ACA是等腰直角三角形,CAA45,ABC1CAA204565,BABC65故选B【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识
14、图是解题的关键7、A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】 ,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;8、B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;由x=-3时,y0,可得9a+3b+c0,可得9a+c-3c,故(1)正确;因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a3b+1c=7a+1
15、1a-5a=14a,由函数的图像开口向下,可知a0,因此7a3b+1c0,故(3)不正确;根据图像可知当x1时,y随x增大而增大,当x1时,y随x增大而减小,可知若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1=y3y1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x11x1,故(5)正确正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线
16、向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b14ac0时,抛物线与x轴有1个交点;=b14ac=0时,抛物线与x轴有1个交点;=b14ac0时,抛物线与x轴没有交点9、C【解析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案【详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 济南市 济阳县 2023 中考 数学 押题 试卷 解析
限制150内