《四川省成都市高新区2023届中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都市高新区2023届中考数学考试模拟冲刺卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1在平面直角坐标系中,点,则点P不可能在( )A第一象限B第二象限C第三象限D第四象限2已知关于x的一元二次方程有实数根,则m的取值范围是( )ABCD3一个几
2、何体的三视图如图所示,该几何体是A直三棱柱B长方体C圆锥D立方体4下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A2B1C0D15如图,在ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C)若线段AD长为正整数,则点D的个数共有( )A5个B4个C3个D2个6碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米0.000000001米,则0.5纳米用科学记数法表示为()A0.5109米B5108米C5109米D51010米7在RtABC中C90,A、B、C的对边分别为a、b、c,c3a,tanA
3、的值为()ABCD38甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )A甲的速度是70米/分B乙的速度是60米/分C甲距离景点2100米D乙距离景点420米9当 a0 时,下列关于幂的运算正确的是( )Aa0=1Ba1=aC(a)2=a2D(a2)3=a510如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()AB
4、CD二、填空题(本大题共6个小题,每小题3分,共18分)11已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示(1)乙比甲晚出发_小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是_12如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 13中国古代的数学专著九章算术有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻互换其中一只,恰好一样重”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程
5、组为_14如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y(x0)的图象经过顶点B,则k的值为_15小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 16如图,在ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=_三、解答题(共8题,共72分)17(8分)如图,在ABC中,C=90作BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求ABD的面积18(8分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球
6、摇匀先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率19(8分)如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,1),抛物线y= x2+bx+c经过点B,与直线l的另一个交点为C(4,n)(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将AOB绕平面内某点M旋转90或180,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1若A1O1B1
7、的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180时点A1的横坐标20(8分)计算:(3.14)02|3|21(8分)九章算术中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?请解答上述问题.22(10分)如图,已知正比例函数y=2x与反比例函数y=(k0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于
8、反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=(k0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标23(12分)如图,点A在MON的边ON上,ABOM于B,AE=OB,DEON于E,AD=AO,DCOM于C求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.24甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜这个游戏对双方公平吗?请列表格或画树状图说明理由参考答
9、案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据坐标平面内点的坐标特征逐项分析即可.【详解】A. 若点在第一象限,则有: ,解之得m1,点P可能在第一象限;B. 若点在第二象限,则有: ,解之得不等式组无解,点P不可能在第二象限;C. 若点在第三象限 ,则有: ,解之得m1,点P可能在第三象限;D. 若点在第四象限,则有:,解之得0m1,点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵
10、坐标为0,y轴上的点横坐标为0.2、C【解析】解:关于x的一元二次方程有实数根,=,解得m1,故选C【点睛】本题考查一元二次方程根的判别式3、A【解析】根据三视图的形状可判断几何体的形状【详解】观察三视图可知,该几何体是直三棱柱故选A本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键4、A【解析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解【详解】|-1|=1,|-1|=1,|-1|-1|=10,四个数表示在数轴上,它们对应的点中,离原点最远的是-1故选A【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合
11、的思想5、C【解析】试题分析:过A作AEBC于E,AB=AC=5,BC=8,BE=EC=4,AE=3,D是线段BC上的动点(不含端点B,C),AEADAB,即3AD5,AD为正整数,AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,点D的个数共有3个故选C考点:等腰三角形的性质;勾股定理6、D【解析】解:0.5纳米=0.50.000 000 001米=0.000 000 000 5米=51010米故选D点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).7、B【解析】根据勾股定理和三角函数即可解答.【详解】解:已知在RtABC中C=
12、90,A、B、C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b=2x.即tanA=.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.8、D【解析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度=70米/分,故A正确,不符合题意;设乙的速度为x米/分则有,660+24x-7024=420,解得x=60,故B正确,本选项不符合题意,7030=2100,故选项C正确,不符合题意,2460=1440米,乙距离景点1440米,故D错误,故选D【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题9、A【解析
13、】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案【详解】A选项:a0=1,正确;B选项:a1= ,故此选项错误;C选项:(a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误; 故选A【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键10、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.二、填空题(本大题共6个小题,每小题3分,共18分)11、2, 0x2或
14、x2 【解析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由 函数图象可知,乙比甲晚出发2小时故答案为2(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0x2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:ykx,由图象可知,(4,20)在函数图象上,代入得:204k,k5,甲的函数解析式为:y5x设乙的函数解析式为:ykx+b,将坐标(2,0),(2,20)代入得: ,解得 ,乙的函数解析式为:y20x20 由得 , ,故 x2符合题意故答案为0x2或x2【点睛】此题考
15、查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据12、【解析】因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.13、【解析】设每只雀、燕的重量各为x两,y两,由题意得: 故答案是:或 14、1【解析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可【详解】解:A(3,4),OC=5,CB=OC=5,则点B的横坐标为35=8,故B的坐标为:(8,4),将点B的坐标代入y=得,4=,解得:k=1故答案为:115、3.551【解析】科学记数法的表示形式为 a10n 的形式,其中 1|a|
16、10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数【详解】3550000=3.551,故答案是:3.551【点睛】考查科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值16、3【解析】分析:由已知条件易得:EFAB,且EF:AB=1:2,从而可得CEFCAB,且相似比为1:2,设SCEF=x,根据相似三角形的性质可得方程:,解此方程即可求得EFC的面积.详解:在ABC中,点E,F分别
17、是AC,BC的中点,EF是ABC的中位线,EFAB,EF:AB=1:2,CEFCAB,SCEF:SCAB=1:4,设SCEF=x,SCAB=SCEF+S四边形ABFE,S四边形ABFE=9,解得:,经检验:是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.三、解答题(共8题,共72分)17、(1)答案见解析;(2)【解析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DEABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DEAB
18、于E,AD平分BAC,DE=CD=4,SABD=ABDE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.18、 【解析】分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率详解:列表如下:红红白黑红(红,红)(白,红)(黑,红)红(红,红)(白,红)(黑,红)白(红,白)(红,白)(黑,白)黑(红,黑)(红,黑)(白,黑)所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)=点睛:此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上
19、完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比19、(1)n=2;y=x2x1;(2)p=;当t=2时,p有最大值;(3)6个,或;【解析】(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得ABO=DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数
20、的最值问题解答;(3)根据逆时针旋转角为90可得A1O1y轴时,B1O1x轴,旋转角是180判断出A1O1x轴时,B1A1AB,根据图3、图4两种情形即可解决【详解】解:(1)直线l:y=x+m经过点B(0,1),m=1,直线l的解析式为y=x1,直线l:y=x1经过点C(4,n),n=41=2,抛物线y=x2+bx+c经过点C(4,2)和点B(0,1),解得,抛物线的解析式为y=x2x1;(2)令y=0,则x1=0,解得x=,点A的坐标为(,0),OA=,在RtOAB中,OB=1,AB=,DEy轴,ABO=DEF,在矩形DFEG中,EF=DEcosDEF=DE=DE,DF=DEsinDEF=
21、DE=DE,p=2(DF+EF)=2(+)DE=DE,点D的横坐标为t(0t4),D(t, t2t1),E(t, t1),DE=(t1)(t2t1)=t2+2t,p=(t2+2t)=t2+t,p=(t2)2+,且0,当t=2时,p有最大值(3)“落点”的个数有6个,如图1,图2中各有2个,图3,图4各有一个所示如图3中,设A1的横坐标为m,则O1的横坐标为m+,m2m1=(m+)2(m+)1,解得m=,如图4中,设A1的横坐标为m,则B1的横坐标为m+,B1的纵坐标比例A1的纵坐标大1,m2m1+1=(m+)2(m+)1,解得m=,旋转180时点A1的横坐标为或【点睛】本题是二次函数综合题型,
22、主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90判断出A1O1y轴时,B1O1x轴,旋转角是180判断出A1O1x轴时,B1A1AB,解题时注意要分情况讨论20、1【解析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式 =13+43,=1【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的
23、运算21、甲有钱,乙有钱.【解析】设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可【详解】解:设甲有钱,乙有钱. 由题意得: ,解方程组得: ,答:甲有钱,乙有钱.【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键22、(1)32;(2)x4或0x4;(3)点P的坐标是P(7+,14+2);或P(7+,14+2)【解析】分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;(2)正比例函数的值小于反
24、比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么POA的面积就应该是四边形面积的四分之一即1可根据双曲线的解析式设出P点的坐标,然后表示出POA的面积,由于POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标详解:(1)点A在正比例函数y=2x上,把x=4代入正比例函数y=2x,解得y=8,点A(4,8),把点A(4,8)代入反比例函数y=,得k=32,(2)点A与B关于原点对称,B点坐标为(4,8),由交点坐标,根据图
25、象直接写出正比例函数值小于反比例函数值时x的取值范围,x8或0x8;(3)反比例函数图象是关于原点O的中心对称图形,OP=OQ,OA=OB,四边形APBQ是平行四边形,SPOA=S平行四边形APBQ=224=1,设点P的横坐标为m(m0且m4),得P(m,),过点P、A分别做x轴的垂线,垂足为E、F,点P、A在双曲线上,SPOE=SAOF=16,若0m4,如图,SPOE+S梯形PEFA=SPOA+SAOF,S梯形PEFA=SPOA=1(8+)(4m)=1m1=7+3,m2=73(舍去),P(7+3,16+);若m4,如图,SAOF+S梯形AFEP=SAOP+SPOE,S梯形PEFA=SPOA=
26、1(8+)(m4)=1,解得m1=7+3,m2=73(舍去),P(7+3,16+)点P的坐标是P(7+3,16+);或P(7+3,16+)点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义利用数形结合的思想,求得三角形的面积23、(1)证明见解析;(2)AB、AD的长分别为2和1【解析】(1)证RtABORtDEA(HL)得AOB=DAE,ADBC证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知RtABORtDEA,AB=DE=2设AD=x,则OA=x,AE=OEOA=9x
27、在RtDEA中,由得:.【详解】(1)证明:ABOM于B,DEON于E,.在RtABO与RtDEA中,RtABORtDEA(HL)AOB=DAEADBC又ABOM,DCOM,ABDC四边形ABCD是平行四边形,四边形ABCD是矩形; (2)由(1)知RtABORtDEA,AB=DE=2 设AD=x,则OA=x,AE=OEOA=9x在RtDEA中,由得:,解得AD=1即AB、AD的长分别为2和1【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.24、不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.【详解】根据题意列表如下: 12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,P(甲获胜)=,P(乙获胜)=1=,则该游戏不公平【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比
限制150内