山东省济宁市鲁桥镇第一中学2023届中考数学模试卷含解析.doc
《山东省济宁市鲁桥镇第一中学2023届中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省济宁市鲁桥镇第一中学2023届中考数学模试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1不等式5+2x 1的解集在数轴上表示正确的是( ).ABCD2如图,已知ABCD中,E是边AD的中点,BE交对角线AC于点F,那么SAFE:S四边形FCDE为( )A1:3B1:
2、4C1:5D1:63把6800000,用科学记数法表示为()A6.8105B6.8106C6.8107D6.81084甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()ABCD5如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角ABO为,则树OA的高度为( )A米B30sin米C30tan米D30cos米6关于反比例函数,下列说法正确的是( )A函数图像经过点(2,2);B函数图像位于第一、三象限;C当时,函数值随着的增大而增大;D当时,7(2011黑河)已知二次函数y=ax2+bx+c(a0)的图象如图所示,现有下列结论:b24
3、ac0 a0 b0 c0 9a+3b+c0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个8如图1,在等边ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则ABC的面积为( ) A4BC12D9已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有()A4个B5个C6个D7个10观察下列图形,其中既是轴对称图形,又是中心对称图形的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11关于x的一元二次方程kx22x+1=0有两个不相等的实数根,则k的取值范围
4、是 12如图,AD是ABC的角平分线,DE,DF分别是ABD和ACD的高,得到下面四个结论:OAOD;ADEF;当BAC90时,四边形AEDF是正方形;AE2DF2AF2DE2.其中正确的是_(填序号)13如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tanOAB=,则AB的长是_14如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 15如图,已知,D、E分别是边BA、CA延长线上的点,且如果,那么AE的长为_16一个多边形的内角和是,则它是_边形三、解答题(共8题,共72分)17(8分)如图,在菱形ABCD中,
5、点P在对角线AC上,且PA=PD,O是PAD的外接圆 (1)求证:AB是O的切线; (2)若AC=8,tanBAC=,求O的半径18(8分)已知,如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E求证:DE是O的切线;若DE=6cm,AE=3cm,求O的半径19(8分)现有一次函数ymx+n和二次函数ymx2+nx+1,其中m0,若二次函数ymx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式若一次函数ymx+n经过点(2,0),且图象经过第一、三象限二次函数ymx2+nx+1经过点(a,y1)和(a+1,y2),且y1y2,请求出a的取
6、值范围若二次函数ymx2+nx+1的顶点坐标为A(h,k)(h0),同时二次函数yx2+x+1也经过A点,已知1h1,请求出m的取值范围20(8分)某汽车专卖店销售A,B两种型号的汽车上周销售额为96万元:本周销售额为62万元,销售情况如下表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?21(8分)如图,在正方形ABCD中,AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求EAF的度数如图,在RtABD中,
7、BAD=90,AB=AD,点M,N是BD边上的任意两点,且MAN=45,将ABM绕点A逆时针旋转90至ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由在图中,若EG=4,GF=6,求正方形ABCD的边长22(10分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(3,4),与y轴交于点C(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EBBC上的一个动点,当点P在线段BC上时,连接EP,若EPBC,请直接写出线段BP与线段AE的关系;过点P作x轴的垂线与过点C作的y轴的垂
8、线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M,如果点M恰好在坐标轴上,请直接写出此时点P的坐标23(12分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM判断四边形AEMF是什么特殊四边形?并证明你的结论24(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CEx轴于点E,tanABO=,OB=4,OE=1(1)求直线AB和反比例函数的解析式;(1)求OCD的面积参考答案一、选择题(共10小题,每
9、小题3分,共30分)1、C【解析】先解不等式得到x-1,根据数轴表示数的方法得到解集在-1的左边【详解】5+1x1,移项得1x-4,系数化为1得x-1故选C【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心2、C【解析】根据AEBC,E为AD中点,找到AF与FC的比,则可知AEF面积与FCE面积的比,同时因为DEC面积=AEC面积,则可知四边形FCDE面积与AEF面积之间的关系【详解】解:连接CE,AEBC,E为AD中点, FEC面积是AEF面积的2倍设AEF面积为x,则AEC面
10、积为3x,E为AD中点,DEC面积=AEC面积=3x四边形FCDE面积为1x,所以SAFE:S四边形FCDE为1:1故选:C【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系3、B【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:把6800000用科学记数法表示为6.81 故选B点睛:本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n
11、为整数,表示时关键要正确确定a的值以及n的值4、D【解析】试题分析:A是轴对称图形,故本选项错误;B是轴对称图形,故本选项错误;C是轴对称图形,故本选项错误;D不是轴对称图形,故本选项正确故选D考点:轴对称图形5、C【解析】试题解析:在RtABO中,BO=30米,ABO为,AO=BOtan=30tan(米)故选C考点:解直角三角形的应用-仰角俯角问题6、C【解析】直接利用反比例函数的性质分别分析得出答案【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x0时,函数值y随着x的
12、增大而增大,故此选项正确;D、关于反比例函数y=-,当x1时,y-4,故此选项错误;故选C【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键7、B【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断解答:解:根据图示知,二次函数与x轴有两个交点,所以=b2-4ac0;故正确;根据图示知,该函数图象的开口向上,a0;故正确;又对称轴x=-=1,0,b0;故本选项错误;该函数图象交于y轴的负半轴,c0;故本选项错误;根据抛物线的对称轴方程可知:(-1,0)关
13、于对称轴的对称点是(3,0);当x=-1时,y0,所以当x=3时,也有y0,即9a+3b+c0;故正确所以三项正确故选B8、D【解析】分析:由图1、图2结合题意可知,当DPAB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PDAB于点P,连接AD,结合ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DPAB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PDAB于点P,连接AD,ABC是等边三角形,点D是BC边上的中点,ABC=60,ADBC,DPAB于点P,此时DP=,BD=,BC=2BD=4,AB=4,AD=ABsinB=4sin60=
14、,SABC=ADBC=.故选D.点睛:“读懂题意,知道当DPAB于点P时,DP最短=”是解答本题的关键.9、A【解析】依据不等式组至少有两个整数解,即可得到a5,再根据存在以3,a,7为边的三角形,可得4a10,进而得出a的取值范围是5a10,即可得到a的整数解有4个【详解】解:解不等式,可得xa,解不等式,可得x4,不等式组至少有两个整数解,a5,又存在以3,a,7为边的三角形,4a10,a的取值范围是5a10,a的整数解有4个,故选:A【点睛】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了1
15、0、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既不是轴对称图形,也不是中心对称图形故本选项错误;B、是轴对称图形,不是中心对称图形故本选项错误;C、是轴对称图形,也是中心对称图形故本选项正确;D、既不是轴对称图形,也不是中心对称图形故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题(本大题共6个小题,每小题3分,共18分)11、k1且k1【解析】试题分析:根据一元二次方程的定义和的意义得到k1且1,即(2)24k11,然后解不等式
16、即可得到k的取值范围解:关于x的一元二次方程kx22x+1=1有两个不相等的实数根,k1且1,即(2)24k11,解得k1且k1k的取值范围为k1且k1故答案为k1且k1考点:根的判别式;一元二次方程的定义12、【解析】试题解析:根据已知条件不能推出OA=OD,错误;AD是ABC的角平分线,DE,DF分别是ABD和ACD的高,DE=DF,AED=AFD=90,在RtAED和RtAFD中,RtAEDRtAFD(HL),AE=AF,AD平分BAC,ADEF,正确;BAC=90,AED=AFD=90,四边形AEDF是矩形,AE=AF,四边形AEDF是正方形,正确;AE=AF,DE=DF,AE2+DF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 济宁市 鲁桥镇 第一 中学 2023 中考 数学 试卷 解析
限制150内