宁夏银川唐徕回民中学2023届高考仿真卷数学试题含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《宁夏银川唐徕回民中学2023届高考仿真卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《宁夏银川唐徕回民中学2023届高考仿真卷数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是( )
2、ABCD2天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为( )ABCD3若实数满足的约束条件,则的取值范围是( )ABCD4已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则( )A,b为任意非零实数B,a为任意非零实数Ca、b均为任意实数D不存在满足条件的实数a,b5已知甲盒子中
3、有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD6已知复数为虚数单位) ,则z 的虚部为( )A2BC4D7设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是( )ABCD8己知四棱锥中,四边形为等腰梯形,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为( )ABCD9已知命题,且是的必要不充分条件,则实数的取值范围为( )ABCD10若点位于由
4、曲线与围成的封闭区域内(包括边界),则的取值范围是( )ABCD11复数满足,则复数在复平面内所对应的点在( )A第一象限B第二象限C第三象限D第四象限12执行如图所示的程序框图,若输入的,则输出的( )A9B31C15D63二、填空题:本题共4小题,每小题5分,共20分。13角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是 14在中,已知,则的最小值是_15若函数在和上均单调递增,则实数的取值范围为_16设,则“”是“”的_条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为
5、.求矩阵.18(12分)已知函数.(1)当时.求函数在处的切线方程;定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.19(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.20(12分)已知等差数列中,数列的前项和.(1)求;(2)若,求的前项和.21(12分)某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:亮灯时长/频数10204020
6、10以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.(1)试估计的值;(2)设表示这10000盏灯在某一时刻亮灯的数目.求的数学期望和方差;若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).附:某盏灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;若,则,.22(10分)已知函数,为的导数,函数在处取得最小值(1)求证:;(2)若时,恒成立,求的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】在对称轴处取得最值有,结合,可得
7、,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】直线是曲线的一条对称轴.,又.平移后曲线为.曲线的一个对称中心为.,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.2、B【解析】利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【详解】20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.故选:B.【点睛】本小题主要考查古典概型的计算,考查组合数的计算
8、,考查学生分析问题的能力,难度较易.3、B【解析】根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.4、A【解析】求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.
9、故选:A【点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题5、A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:
10、该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.6、A【解析】对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.7、A【解析】依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.8、A【解析】根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 宁夏银川 回民 中学 2023 高考 仿真 数学试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内