四川省成都市七中学育才校2023年中考数学押题卷含解析.doc
《四川省成都市七中学育才校2023年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都市七中学育才校2023年中考数学押题卷含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC的度数为( )A90B60C45D302下列各式计算正确的是( )A(b+2a)(2ab)=b24a2B2a3+a3=3a6Ca3a=a4D(a2b)3=a6b33的平方
2、根是( )A2BC2D4在直角坐标系中,已知点P(3,4),现将点P作如下变换:将点P先向左平移4个单位,再向下平移3个单位得到点P1;作点P关于y轴的对称点P2;将点P绕原点O按逆时针方向旋转90得到点P3,则P1,P2,P3的坐标分别是()AP1(0,0),P2(3,4),P3(4,3)BP1(1,1),P2(3,4),P3(4,3)CP1(1,1),P2(3,4),P3(3,4)DP1(1,1),P2(3,4),P3(4,3)5已知O的半径为13,弦ABCD,AB=24,CD=10,则四边形ACDB的面积是()A119B289C77或119D119或2896如图,数轴上的三点所表示的数分
3、别为,其中,如果|那么该数轴的原点的位置应该在( )A点的左边B点与点之间C点与点之间D点的右边7如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A16cmB20cmC24cmD28cm8在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是ABC的()A三条高的交点B重心C内心D外心9关于二次函数,下列说法正确的是( )A图像与轴的交点坐标为B图像的对称轴在轴的右侧C当时,的值随值的增
4、大而减小D的最小值为-310若不等式组的整数解共有三个,则a的取值范围是()A5a6B5a6C5a6D5a6二、填空题(本大题共6个小题,每小题3分,共18分)11如图,边长为4的正方形ABCD内接于O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且EOF=90,连接GH,有下列结论:弧AE=弧BF;OGH是等腰直角三角形;四边形OGBH的面积随着点E位置的变化而变化;GBH周长的最小值为4+2其中正确的是_(把你认为正确结论的序号都填上)12如果关于x的方程x2+2axb2+2=0有两个相等的实数根,且常数a与b互为倒数,那
5、么a+b=_13在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|ab|1则称甲乙”心有灵犀”现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_14已知:正方形 ABCD求作:正方形 ABCD 的外接圆 作法:如图,(1)分别连接 AC,BD,交于点 O;(2)以点 O 为圆心,OA 长为半径作O,O 即为所求作的圆请回答:该作图的依据是_15如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_16如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,1)
6、为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是_三、解答题(共8题,共72分)17(8分)我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?18(8分)如图,在ABC中,ABAC,若将ABC绕点C顺时针旋转180得到EFC,连接AF、BE(1)求证:四边形ABEF是平行四边形;(2)当ABC为多少度时,四边形ABEF为矩形?请说明理由19(8分)如图所示,AB是O的一条弦
7、,DB切O于点B,过点D作DCOA于点C,DC与AB相交于点E(1)求证:DB=DE;(2)若BDE=70,求AOB的大小20(8分)如图,点A、B、C、D在同一条直线上,CEDF,EC=BD,AC=FD,求证:AE=FB21(8分)如图,在ABC中,ABAC,以AB为直径作半圆O,交BC于点D,连接AD,过点D作DEAC,垂足为点E,交AB的延长线于点F(1)求证:EF是O的切线(2)如果O的半径为5,sinADE,求BF的长22(10分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,
8、有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在RtABC中,C=90,AC=BC=6cm,D是线段AB上一动点,射线DEBC于点E,EDF=60,射线DF与射线AC交于点F设B,E两点间的距离为xcm,E,F两点间的距离为ycm(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm6.95.34.03.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,
9、画出该函数的图象;(4)结合画出的函数图象,解决问题:当DEF为等边三角形时,BE的长度约为 cm23(12分) 阅读我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”理解如图1,RtABC是“中边三角形”,C=90,AC和BD是“对应边”,求tanA的值;探究如图2,已知菱形ABCD的边长为a,ABC=2,点P,Q从点A同时出发,以相同速度分别沿折线ABBC和ADDC向终点C运动,记点P经过的路程为s当=45时,若APQ是“中边三角形”,试求的值24已知:如图,在平面直角坐标系中,O为坐标原点,OAB的顶点A、B的坐标
10、分别是A(0,5),B(3,1),过点B画BCAB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD(1)求证:ABCAOD(2)设ACD的面积为,求关于的函数关系式(3)若四边形ABCD恰有一组对边平行,求的值 参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=()1+()1=()1AC1+BC1=AB1ABC是等腰直角三角形ABC=45故选C考点:勾股定理2、C【解析】各项计算得到结果,即可作出判断解:A
11、、原式=4a2b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=a6b3,不符合题意,故选C3、D【解析】先化简,然后再根据平方根的定义求解即可【详解】=2,2的平方根是,的平方根是故选D【点睛】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错4、D【解析】把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可【详解】点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,P1的坐标为(1,1)点P关
12、于y轴的对称点是P2,P2(3,4)将点P绕原点O按逆时针方向旋转90得到点P3,P3(4,3)故选D【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90得到的点的坐标为(b,a)5、D【解析】分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:当弦AB和CD在圆心同侧时,如图1,AB=24cm,CD=10cm,AE=12cm,CF=5cm,O
13、A=OC=13cm,EO=5cm,OF=12cm,EF=12-5=7cm;四边形ACDB的面积 当弦AB和CD在圆心异侧时,如图2,AB=24cm,CD=10cm,.AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=OF+OE=17cm.四边形ACDB的面积四边形ACDB的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.6、C【解析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解【详解
14、】|a|c|b|,点A到原点的距离最大,点C其次,点B最小,又AB=BC,原点O的位置是在点B、C之间且靠近点B的地方故选:C【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键7、C【解析】首先根据平行线的性质以及折叠的性质证明EAC=DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角ADF中利用勾股定理求解【详解】长方形ABCD中,ABCD,BAC=DCA,又BAC=EAC,EAC=DCA,FC=AF=25cm,又长方形ABCD中,DC=AB=32cm,DF=DC-FC=32-25=7cm,在直角ADF中,AD=24(cm)故选C【点睛】本题考查了折叠的性质以及勾股定理
15、,在折叠的过程中注意到相等的角以及相等的线段是关键8、D【解析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上【详解】三角形的三条垂直平分线的交点到中间的凳子的距离相等,凳子应放在ABC的三条垂直平分线的交点最适当故选D【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养想到要使凳子到三个人的距离相等是正确解答本题的关键9、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题详解:y=2x2+4x-1=2(x+1)2-3,当x=0时,y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 成都市 中学 育才 2023 年中 数学 押题 解析
限制150内