《山东省枣庄市台儿庄区2023年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省枣庄市台儿庄区2023年中考数学对点突破模拟试卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )A1.018104B1.018105C10.18105D0.10181062下列四个函数图象中,当x0时,函数值y随自变量x的增大而减小的是( )ABCD3已知一次函数y=2x+3,当0x5时,函数y的最大值是()
2、A0 B3 C3 D74中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中孙子算经中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程( )ABCD5点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1x20x3,则y1,y2,y3的大小关系是()Ay1y2y3By2y3y1Cy3y2y1Dy2y1y36关于x的一元一次不等式2的解集为x4,则m的值为( )A14B7C2D27某个
3、密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )ABCD8估计2的运算结果在哪两个整数之间()A0和1B1和2C2和3D3和49抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A中位数 B众数 C平均数 D方差10小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25 ,小宇妈妈
4、又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克若设早上葡萄的价格是 x 元/千克,则可列方程( )ABCD二、填空题(共7小题,每小题3分,满分21分)11已知点、都在反比例函数的图象上,若,则k的值可以取_写出一个符合条件的k值即可12从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是_ .13如图,在RtABC中,ACB90,ABC30,将ABC绕点C顺时针旋转至ABC,使得点A恰好落在AB上,则旋转角度为_14如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是_15已知,正六边形的边长为1cm,
5、分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为_cm(结果保留)16一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_.17如图,将边长为的正方形ABCD绕点A逆时针方向旋转30后得到正方形ABCD,则图中阴影部分面积为_平方单位三、解答题(共7小题,满分69分)18(10分)如图,已知反比例函数y与一次函数yk2xb的图象交于A(1,8),B(4,m)求k1,k2,b的值;求AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y的图象上的两点,且
6、x1x2,y1y2,指出点M,N各位于哪个象限,并简要说明理由19(5分)中华文明,源远流长;中华汉字,寓意深广为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50x60100.0560x70300.1570x8040n80x90m0.3590x100500.25根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90
7、分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?20(8分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD(1)求证:EB=GD;(2)若AB=5,AG=2,求EB的长21(10分)如图,一次函数y=kx+b的图象与反比例函数y=(x0)的图象交于A(2,1),B(,n)两点,直线y=2与y轴交于点C(1)求一次函数与反比例函数的解析式;(2)求ABC的面积.22(10分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22时,教学楼在建筑物的墙上留下高2m的影子
8、CE;而当光线与地面的夹角是45时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上)求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数)23(12分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,2)求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论24(14分)如图,菱形中,分别是边的中点求证:.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】.故
9、选B.点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).2、D【解析】A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x0时,y随x的增大而减小;故本选项正确故选 D【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.3、B【解析】【分析】由于一次函数y=-2x+
10、3中k=-20由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0x5范围内函数值的最大值【详解】一次函数y=2x+3中k=20,y随x的增大而减小,在0x5范围内,x=0时,函数值最大20+3=3,故选B【点睛】本题考查了一次函数y=kx+b的图象的性质:k0,y随x的增大而增大;k0,y随x的增大而减小4、A【解析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可【详解】设有x辆车,则可列方程:3(x-2)=2x+1故选:A【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键
11、5、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1x20x1,判断出三点所在的象限,再根据函数的增减性即可得出结论【详解】反比例函数y=中,k=10,此函数图象的两个分支在一、三象限,x1x20x1,A、B在第三象限,点C在第一象限,y10,y20,y10,在第三象限y随x的增大而减小,y1y2,y2y1y1故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键6、D【解析】解不等式得到xm+3,再列出关于m的不等式求解.【详解】1,m1x6,1xm6,xm+3,关于x的一元一次不等式1的解集为x4,m
12、+3=4,解得m=1故选D考点:不等式的解集7、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码),故答案选A.考点:概率.8、D【解析】先估算出的大致范围,然后再计算出2的大小,从而得到问题的答案【详解】253231,51原式=22=2,322故选D【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键9、A【解析】7人成绩的中位数是第4名的成绩参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有7个人,且他们的分数互不相同,第4
13、的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.10、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】利用反比例函数的性质,即可得到反比例函数图象在第一、三象限,进而得出,据此可得k的取值【详解】
14、解:点、都在反比例函数的图象上,在每个象限内,y随着x的增大而增大,反比例函数图象在第一、三象限,的值可以取等,答案不唯一故答案为:【点睛】本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答12、144【解析】根据多边形内角和公式计算即可.【详解】解:由题知,这是一个10边形,根据多边形内角和公式:每个内角等于.故答案为:144.【点睛】此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.13、60【解析】试题解析:ACB=90,ABC=30,A=90-30=60,ABC绕点C顺时针旋转至ABC时点A恰好落在AB上,AC=AC,AAC是等
15、边三角形,ACA=60,旋转角为60故答案为60.14、【解析】根据几何概率的求法:球落在黑色区域的概率就是黑色区域的面积与总面积的比值【详解】解:由图可知黑色区域与白色区域的面积相等,故球落在黑色区域的概率是=【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率15、【解析】考点:弧长的计算;正多边形和圆分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式解:方法一:先求出正六边形的每一个内角=120,所得到的三条弧的长度之和=3=2cm;方法二:先求出正六边形的
16、每一个外角为60,得正六边形的每一个内角120,每条弧的度数为120,三条弧可拼成一整圆,其三条弧的长度之和为2cm16、 【解析】试题解析:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,故答案为17、62【解析】由旋转角BAB=30,可知DAB=9030=60;设BC和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形S四边形ABOD,计算面积即可【详解】解:设BC和CD的交点是O,连接OA,AD=AB,AO=AO,D=B=90,RtADORtABO,OAD=OAB=30,OD=OB= ,S四边形ABOD=2SAOD=2
17、=2,S阴影部分=S正方形S四边形ABOD=62【点睛】此题的重点是能够计算出四边形的面积注意发现全等三角形三、解答题(共7小题,满分69分)18、 (1) k11,b6(1)15(3)点M在第三象限,点N在第一象限【解析】试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据SABC=SAOC+SBOC即可求得AOB的面积;(3)由可知有三种情况,点M、N在第三象限的分支上,点M、N在第一象限的分支上, M在第三象限,点N在第一象限,分类讨论把不合题意的舍去
18、即可试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1A(1,8)、B(-4,-1)在图象上,解得,(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,OC=3SABC=SAOC+SBOC=(3)点M在第三象限,点N在第一象限若0,点M、N在第三象限的分支上,则,不合题意;若0,点M、N在第一象限的分支上,则,不合题意;若0,M在第三象限,点N在第一象限,则0,符合题意考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质19、(1)70,0.2;(2)补图见解析;(3)80x90;(4)750人.【解析】分析:(1)根据第一组
19、的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可详解:(1)本次调查的总人数为100.05=200,则m=2000.35=70,n=40200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80x90,这200名学生成绩的中位数
20、会落在80x90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:30000.25=750(人)点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了中位数和利用样本估计总体20、(1)证明见解析;(2) ;【解析】(1)根据正方形的性质得到GAD=EAB,证明GADEAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BDAC,AC=BD=5,根据勾股定理计算即可【详解】(1)在GAD和EAB中,GAD=90+EAD,EAB=90+EAD,GAD=EAB,在GAD
21、和EAB中,GADEAB,EB=GD; (2)四边形ABCD是正方形,AB=5,BDAC,AC=BD=5,DOG=90,OA=OD=BD=,AG=2 ,OG=OA+AG=,由勾股定理得,GD=,EB=【点睛】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键21、(1)y=2x5,;(2)【解析】试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC面积
22、试题解析:(1)把A(2,1)代入反比例解析式得:1=,即m=2,反比例解析式为,把B(,n)代入反比例解析式得:n=4,即B(,4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=5,则一次函数解析式为y=2x5;(2)如图,SABC=考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用22、(1)2m(2)27m【解析】(1)首先构造直角三角形AEM,利用,求出即可(2)利用RtAME中,求出AE即可【详解】解:(1)过点E作EMAB,垂足为M设AB为x在RtABF中,AFB=45,BF=AB=x,BC=BFFC=x1在RtAEM中,AEM=22,AM=ABB
23、M=ABCE=x2,又,解得:x2教学楼的高2m(2)由(1)可得ME=BC=x+12+1=3在RtAME中,AE=MEcos22A、E之间的距离约为27m23、(1)(2)1x0或x1(3)四边形OABC是平行四边形;理由见解析【解析】(1)设反比例函数的解析式为(k0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CBOA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为(k0)A(m,2)在y=2x上,2=2m,解得m=1A(1,2)又点A在上,解得k=2,反比例函数的解析式为(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为1x0或x1(3)四边形OABC是菱形证明如下: A(1,2),由题意知:CBOA且CB=,CB=OA四边形OABC是平行四边形C(2,n)在上,C(2,1)OC=OA平行四边形OABC是菱形24、证明见解析.【解析】根据菱形的性质,先证明ABEADF,即可得解.【详解】在菱形ABCD中,ABBCCDAD,BD.点E,F分别是BC,CD边的中点,BEBC,DFCD,BEDF.ABEADF,AEAF.
限制150内