山东省日照一中2023年高三下学期第五次调研考试数学试题含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《山东省日照一中2023年高三下学期第五次调研考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省日照一中2023年高三下学期第五次调研考试数学试题含解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件2如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直
2、线相交的平面个数分别记为,则下列结论正确的是()ABCD3函数在内有且只有一个零点,则a的值为( )A3B3C2D24已知函数,当时,恒成立,则的取值范围为( )ABCD5设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD6在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )ABC1D7函数(且)的图象可能为( )ABCD8如图,在直角梯形ABCD中,ABDC,ADDC,ADDC2AB,E为AD的中点,若,则的值为()A BCD9设函数,则函数的图像可能为( )ABCD10设函数是奇函数的导函数,当时,则使得成立的的取值
3、范围是( )ABCD11如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是( )ABCD12某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,已知圆及点,设点是圆上的动点,在中,若的角平分线与相交于点,则的取值范围是_.14若函数为奇函数,则_.15对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为_.16已知,则的最小值是_三、解答题:共70分
4、。解答应写出文字说明、证明过程或演算步骤。17(12分)的内角的对边分别为,且(1)求角的大小(2)若,的面积,求的周长18(12分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.19(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.20(12分)在中,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60,连接,如图:(1)证明:平面平面(2)求平面与平面所成二面角的大小.21(12分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形
5、, 为棱上的动点,且.(I)求证:为直角三角形;(II)试确定的值,使得二面角的平面角余弦值为.22(10分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生
6、的原始成绩从高到低分为、共8个等级。参照正态分布原则,确定各等级人数所占比例分别为、.等级考试科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科等级的原始分分布区间为5869,则该同学化学学科的原始成绩属等级.而等级的转换分区间为6170,那么该同学化学学科的转换分为:设该同学化学科的转换等级分为,求得.四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共2000人,为给高一学生合
7、理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.(i)若小明同学在这次考试中物理原始分为84分,等级为,其所在原始分分布区间为8293,求小明转换后的物理成绩;(ii)求物理原始分在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记表示这4人中等级成绩在区间的人数,求的分布列和数学期望.(附:若随机变量,则,)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件.【详解】余弦函数在区
8、间上单调递减,且,由,可得,由正弦定理可得.因此,“”是“”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.2、A【解析】根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,平面,平面,且与正方体的其余四个面所在平面均相交,结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.3、A【解析】求出,对分类讨论,求出单
9、调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,在单调递增,且,在不存在零点;若,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.4、A【解析】分析可得,显然在上恒成立,只需讨论时的情况即可,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【点睛】本题考查了不等式恒成
10、立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.5、D【解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.6、B【解析】首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 日照 一中 2023 年高 下学 第五 调研 考试 数学试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内