《山东省乐陵市花园镇达标名校2023届中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省乐陵市花园镇达标名校2023届中考适应性考试数学试题含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1直线y=3x+1不经过的象限是()A第一象限B第二象限C第三象限D第四象限2按如下方法,将ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得DEF,则下列说法正确的个数是()ABC与DEF是位似图形ABC与DEF是相似图形ABC与DEF的周长比为1:2ABC与DEF的面积比为4:1A1B2C3D43如图,在ABC中,B90,AB3cm,BC6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P
3、点到达B点运动停止,则PBQ的面积S随出发时间t的函数关系图象大致是()ABCD4下列计算正确的是()AB0.00002=2105CD5如图,在RtABC中,ACB90,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD6若(x1)01成立,则x的取值范围是()Ax1Bx1Cx0Dx17一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是ABCD8已知反比例函数下列结论正确的是( )A图像经
4、过点(-1,1)B图像在第一、三象限Cy 随着 x 的增大而减小D当 x 1时, y ”,“【解析】分析:首先求得抛物线y=x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可详解:抛物线y=x2+2x的对称轴是x=1a=10,抛物线开口向下,123,y1y2 故答案为点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题14、 【解析】根据题目中的程序可以分别计算出y2和yn,从而可以解答本题【详解】y1=,y2=,y3=,yn=故答案为:【点睛】本题考查了分式的混合运算,解答本题的关键是明
5、确题意,用代数式表示出相应的y2和yn15、1m2【解析】首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.【详解】不等式组有个整数解,其整数解有、这个,.故答案为:.【点睛】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.16、(4,6),(82,6),(2,6)【解析】分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标【详解】解:当M为顶点时,AB长为底=8,M在DC中点上, 所以M的坐标为(4, 6),当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME=2所以M的坐标
6、为(82,6);当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF=2所以M的坐标为(2,6);综上所述,M的坐标为(4,6),(82,6),(2,6);故答案为:(4,6),(82,6),(2,6)【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.17、3:1【解析】AOB与COD关于点O成位似图形,AOBCOD,则AOB与COD的相似比为OB:OD=3:1,故答案为3:1 (或)三、解答题(共7小题,满分69分)18、自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】设自行车速度为x千米/小时,则汽车速度为2.5
7、x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得,解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.19、(1)详见解析;(2)80【分析】(1)根据ACD=ADC,BCD=EDC=90,可得ACB=ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【解析】(1)根据ACD=ADC,BCD=EDC=90,可得ACB=ADE,进而运用SAS即可判
8、定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【详解】证明:(1)AC=AD,ACD=ADC,又BCD=EDC=90,ACB=ADE,在ABC和AED中,ABCAED(SAS);解:(2)当B=140时,E=140,又BCD=EDC=90,五边形ABCDE中,BAE=5401402902=80【点睛】考点:全等三角形的判定与性质20、赚了520元【解析】(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根
9、据(1)先求出第一次和第二次购书数目,再根据卖书数目(实际售价当次进价)求出二次赚的钱数,再分别相加即可得出答案【详解】(1)设第一次购书的单价为x元,根据题意得:+10,解得:x5,经检验,x5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为12005240(本),第二次购书为240+10250(本),第一次赚钱为240(75)480(元),第二次赚钱为200(751.2)+50(70.451.2)40(元),所以两次共赚钱480+40520(元),答:该老板两次售书总体上是赚钱了,共赚了520元【点睛】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到
10、合适的等量关系是解决问题的关键21、(1)答案见解析;(2).【解析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)1025%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4=1(人),八年级获一等奖人数:4=1(人), 九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学
11、用N表示,九年级获一等奖的同学用P1 、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.22、(1),yx+5;(2)0x1或x4;(3)P的坐标为(,0),见解析.【解析】(1)把A(1,4)代入y,求出m4,把B(4,n)代入y,求出n1,然后把把A(1,4)、(4,1)代入ykx+b,即可求出一次函数解析式;(2)根据图像解答即可;(3)作B关于x轴的对称点B,连接AB,交x轴于P,此时PA+
12、PBAB最小,然后用待定系数法求出直线AB的解析式即可.【详解】解:(1)把A(1,4)代入y,得:m4,反比例函数的解析式为y;把B(4,n)代入y,得:n1,B(4,1),把A(1,4)、(4,1)代入ykx+b,得:,解得:,一次函数的解析式为yx+5;(2)根据图象得当0x1或x4,一次函数yx+5的图象在反比例函数y的下方;当x0时,kx+b的解集为0x1或x4;(3)如图,作B关于x轴的对称点B,连接AB,交x轴于P,此时PA+PBAB最小,B(4,1),B(4,1),设直线AB的解析式为ypx+q,解得,直线AB的解析式为,令y0,得,解得x,点P的坐标为(,0)【点睛】本题考查
13、了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.23、(1)答案见解析;(2)证明见解析.【解析】(1)如图,在O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,则判断BE为直径,所以BFE=BCE=90,同理可得FBC=CEF=90,然后判断四边形BCEF为矩形【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形理由如下:连接BE,如图,六边形ABCDEF为正六边形,AB=BC=CD=DE=EF=FA,BE为直径,BFE=BCE=90,同理可得FBC=CEF=90,四边形BCEF为矩形【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了矩形的判定与正六边形的性质24、2-【解析】先求三角函数,再根据实数混合运算法计算.【详解】解:原式=21-1-=1+1-=2-【点睛】此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.
限制150内