山西省太原师范院附属中学2023年中考数学最后冲刺模拟试卷含解析.doc
《山西省太原师范院附属中学2023年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《山西省太原师范院附属中学2023年中考数学最后冲刺模拟试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()ABCD2下列手机手势解锁图案中,是轴对称图形的是( )ABCD3解分式方程时,去分母后变形为ABCD4下列图形不是正方体展开图的是()A
2、BCD5如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“ABC”的过程,形成一组波浪线点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是()A10BCD156如图,ABC中,B70,则BAC30,将ABC绕点C顺时针旋转得EDC当点B的对应点D恰好落在AC上时,CAE的度数是()A30B40C50D607如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿ADEFGB的路线绕多
3、边形的边匀速运动到点B时停止(不含点A和点B),则ABP的面积S随着时间t变化的函数图象大致是( )ABCD8关于x的一元二次方程(a1)x2+x+a210的一个根为0,则a值为()A1B1C1D09如图,点A所表示的数的绝对值是()A3B3CD10根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8107B880108C8.8109D8.81010二、填空题(共7小题,每小题3分,满分21分)11如图,ABC中,AB=AC,D是AB上的一点,且
4、AD=AB,DFBC,E为BD的中点若EFAC,BC=6,则四边形DBCF的面积为_12如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_.13瑞士的一位中学教师巴尔末从光谱数据,中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门请你根据这个规律写出第9个数_14已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B连接OC交反比例函数图象于点D,且,连接OA,OE,如果AOC的面积是15,则ADC与BOE
5、的面积和为_15如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为,两侧离地面高处各有一盏灯,两灯间的水平距离为,则这个门洞的高度为_.(精确到)16抛物线y=x2+bx+c的部分图象如图所示,若y0,则x的取值范围是_17已知圆锥的底面半径为40cm, 母线长为90cm, 则它的侧面展开图的圆心角为_三、解答题(共7小题,满分69分)18(10分)已知顶点为A的抛物线ya(x)22经过点B(,2),点C(,2)(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPMMAF,求POE的面积;(3)如图2,
6、点Q是折线ABC上一点,过点Q作QNy轴,过点E作ENx轴,直线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN,若点N落在x轴上,请直接写出Q点的坐标19(5分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)20(8分)赵亮同学想利用影长测量学校旗杆
7、的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为_米21(10分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32的方向上,向东走过780米后到达B处,测得海岛在南偏西37的方向,求小岛到海岸线的距离(参考数据:tan37=cot530.755,cot37=tan531.327,tan32=cot580.625,cot32=tan581.1)22(10分)求不等式组 的整数解.23(12分)如图,点是线段的中点,求证:24(14分)某商场销售一批名牌衬
8、衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OCBD且BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案【详解】解:如图,连接OC、OD、BD,点C、D是半圆O的三等分点,AOC=COD=DOB=60,OC
9、=OD,COD是等边三角形,OC=OD=CD,OB=OD,BOD是等边三角形,则ODB=60,ODB=COD=60,OCBD,S阴影=S扇形OBD,S半圆O,飞镖落在阴影区域的概率,故选:D【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积2、D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛
10、】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.3、D【解析】试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.4、B【解析】由平面图形的折叠及正方体的展开图解题【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体故选B【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.5、C【解析】A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积【详解】A,C之间的距离为6,20176
11、=3361,故点P离x轴的距离与点B离x轴的距离相同,在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,m=6,20202017=3,故点Q与点P的水平距离为3, 解得k=6,双曲线 1+3=4, 即点Q离x轴的距离为, 四边形PDEQ的面积是故选:C【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.6、C【解析】由三角形内角和定理可得ACB=80,由旋转的性质可得AC=CE,ACE=ACB=80,由等腰的性质可得CAE=AEC=50【详解】B70,BAC30ACB80将ABC绕点C顺时针旋转得EDCACCE,ACEACB80CAEAEC50故选C【点
12、睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键7、B【解析】解:当点P在AD上时,ABP的底AB不变,高增大,所以ABP的面积S随着时间t的增大而增大;当点P在DE上时,ABP的底AB不变,高不变,所以ABP的面积S不变;当点P在EF上时,ABP的底AB不变,高减小,所以ABP的面积S随着时间t的减小而减小;当点P在FG上时,ABP的底AB不变,高不变,所以ABP的面积S不变;当点P在GB上时,ABP的底AB不变,高减小,所以ABP的面积S随着时间t的减小而减小;故选B8、B【解析】根据一元二次方程的定义和一元二次方程的解的定义得出:a10,a210,求出a的值即可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 太原 师范 附属中学 2023 年中 数学 最后 冲刺 模拟 试卷 解析
限制150内