山东省新泰一中2023届高考压轴卷数学试卷含解析.doc
《山东省新泰一中2023届高考压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省新泰一中2023届高考压轴卷数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,角所对的边分别为,已知,则( )A或BCD或2设,则、的大小关系为( )ABCD3若集合,则=( )ABCD4二项式的展开式中,常数项为( )AB80CD1605函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的
2、是A函数的最小正周期是B函数的图象关于点成中心对称C函数在单调递增D函数的图象向右平移后关于原点成中心对称6函数的定义域为( )A或B或CD7在满足,的实数对中,使得成立的正整数的最大值为( )A5B6C7D98已知全集,集合,则( )ABCD9已知,则p是q的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件10已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是( )ABCD11曲线在点处的切线方程为( )ABCD12已知平面和直线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则二、填空题:本题共4小题,每小题
3、5分,共20分。13已知集合,则_.14已知全集,则_.15如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为_.16在数列中,已知,则数列的的前项和为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图所示,直角梯形中,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.18(12分)已知等腰梯形中(如图1),为线段
4、的中点,、为线段上的点,现将四边形沿折起(如图2)(1)求证:平面;(2)在图2中,若,求直线与平面所成角的正弦值.19(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟)若用时不超过(分钟),则称这个工人为优秀员工(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望20(12分)已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),
5、且的周长为6,点关于原点的对称点为,直线交于点.(1)求椭圆方程;(2)若直线与椭圆交于另一点,且,求点的坐标.21(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.22(10分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据正弦定理得到,化简得到答案.【详解】由,得,或,或故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.2、D【解析】因为,所以且在上单调递减,且 所以,所以,又因为,所以,所以.故
6、选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.3、C【解析】试题分析:化简集合故选C考点:集合的运算4、A【解析】求出二项式的展开式的通式,再令的次数为零,可得结果.【详解】解:二项式展开式的通式为,令,解得,则常数项为.故选:A.【点睛】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.5、B【解析】根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案【详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期, 不妨令,由周期,所以,又,所以,所以
7、,令,解得,当时,即函数的一个对称中心为,即函数的图象关于点成中心对称故选B【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题6、A【解析】根据偶次根式被开方数非负可得出关于的不等式,即可解得函数的定义域.【详解】由题意可得,解得或.因此,函数的定义域为或.故选:A.【点睛】本题考查具体函数定义域的求解,考查计算能力,属于基础题.7、A【解析】由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出
8、,从而得出的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.8、B【解析】直接利用集合的基本运算求解即可【详解】解:全集,集合,则,故选:【点睛】本题考查集合的基本运算,属于基础题9、B【解析】根据诱导公式化简再分析即可.【详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不
9、充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.10、A【解析】建立平面直角坐标系,求出直线,设出点,通过,找出与的关系通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线 , 设点, 所以 由得 ,即 ,所以,由及,解得,由二次函数的图像知,所以的取值范围是故选A【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用11、A【解析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 新泰 一中 2023 高考 压轴 数学试卷 解析
限制150内