山东省文登市大水泊中学2023届高考数学倒计时模拟卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《山东省文登市大水泊中学2023届高考数学倒计时模拟卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省文登市大水泊中学2023届高考数学倒计时模拟卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数z满足(i为虚数单位),则z的虚部为( )ABC1D2已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )ABCD3曲线在点处的切线方程为,则( )ABC4D84用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为( )ABCD5已知m,n为异面直线,m平面,n平面,直线l满足l m,l n,则( )A且B且C与相交,且交线垂直于D与相交,且交线平行于6在中,为中点,且,若,则( )A
3、BCD7设是虚数单位,若复数,则( )ABCD8为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:实施项目种植业养殖业工厂就业服务业参加用户比脱贫率那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )A倍B倍C倍D倍9记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为( )ABCD10命
4、题:的否定为ABCD11已知函数,且关于的方程有且只有一个实数根,则实数的取值范围( )ABCD12在四边形中,点在线段的延长线上,且,点在边所在直线上,则的最大值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列的各项均为正数,记为的前n项和,若,则_.14抛物线上到其焦点的距离为的点的个数为_15如图所示,平面BCC1B1平面ABC,ABC120,四边形BCC1B1为正方形,且ABBC2,则异面直线BC1与AC所成角的余弦值为_16已知集合,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列an满足条件,且an+2(1)n(
5、an1)+2an+1,nN*()求数列an的通项公式;()设bn,Sn为数列bn的前n项和,求证:Sn18(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.19(12分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值20(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建
6、立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为(为参数).()求曲线C1和C2的极坐标方程:()设射线=(0)分别与曲线C1和C2相交于A,B两点,求|AB|的值21(12分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次摸奖停止的概率;(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X
7、的分布列和数学期望.22(10分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.2、A【解析】根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方
8、程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.3、B【解析】求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.4、C【解析】由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】每次生成一个实数小于1的概率为.这3个实数都小于1的概率为.故选:C.【点睛】本题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 文登市 大水 中学 2023 高考 数学 倒计时 模拟 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内