山东省日照于里中学2023届中考数学最后冲刺浓缩精华卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《山东省日照于里中学2023届中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省日照于里中学2023届中考数学最后冲刺浓缩精华卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着BED的路线匀速行进,到达点D设运动员P的运动时间为t,到监测点的距离为y现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A监测点AB监测点BC监测点CD监测点D2(2016四川省甘孜州)如图,在55的正方形网格中,每个小正方形的边长都为1,若将AOB绕点O顺时针旋转90得到AOB,则A点运动的路径的长为()AB2C
3、4D83如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( )ABCD4小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:西游记、施耐庵、安徒生童话、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )ABCD5一元二次方程的根是( )ABCD6如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )ABCD7有一种球状细菌的直径用科学记数法表示为2.16103米,则这个直径是()A216000米B0.00216米C0.000216米D0.0000216米8如图,AC是O的
4、直径,弦BDAO于E,连接BC,过点O作OFBC于F,若BD=8cm,AE=2cm,则OF的长度是()A3cmB cmC2.5cmD cm9今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )A小明中途休息用了20分钟B小明休息前爬山的平均速度为每分钟70米C小明在上述过程中所走的路程为6600米D小明休息前爬山的平均速度大于休息后爬山的平均速度10如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的周长为18,则四边形EFCD的周长为A1
5、4B13C12D10二、填空题(本大题共6个小题,每小题3分,共18分)11方程的解是_12分解因式:=_13某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有_只14如图,AB是圆O的直径,AC是圆O的弦,AB=2,BAC=30在图中画出弦AD,使AD=1,则CAD的度数为_15如图,在ABCD中,AC与BD交于点M,点F在AD上,AF6cm,BF12cm,FBMCBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2c
6、m/秒的速度从点C出发,沿CB向点B运动点P运动到F点时停止运动,点Q也同时停止运动当点P运动_秒时,以点P、Q、E、F为顶点的四边形是平行四边形16如果a2a10,那么代数式(a)的值是 三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数的图象上求反比例函数的表达式;在x轴的负半轴上存在一点P,使得SAOP=SAOB,求点P的坐标;若将BOA绕点B按逆时针方向旋转60得到BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由18(8分)如图,O是ABC的外接圆,AB为直径,ODBC交O于点D,交AC于点E
7、,连接AD、BD、CD(1)求证:ADCD;(2)若AB10,OE3,求tanDBC的值19(8分)解不等式组,并把解集在数轴上表示出来20(8分)如图1,经过原点O的抛物线y=ax2+bx(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POCMOB?若存在,求出点P的坐标;若不存在,请说明理由21(8分)已知:如图,E是BC上一点,ABEC,ABCD,B
8、CCD求证:ACED22(10分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示)求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度23(12分)如图,以AD为直径的O交AB于C点,BD的延长线交O于E点,连CE交AD于F点,若ACBC(1)求证:;(2)若,求tanCED的值24某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千
9、克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为W元(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误故选2、B【解析】试题分
10、析:每个小正方形的边长都为1,OA=4,将AOB绕点O顺时针旋转90得到AOB,AOA=90,A点运动的路径的长为:=2故选B考点:弧长的计算;旋转的性质3、B【解析】如图所示,过O点作a的平行线d,根据平行线的性质得到23,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,ad,由两直线平行同位角相等得到2350,木条c绕O点与直线d重合时,与直线a平行,旋转角1290.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.4、D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,
11、再根据概率公式即可得出答案【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是;故选D【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比5、D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题原方程可化为:,因此或,所以故选D考点:一元二次方程的解法因式分解法提公因式法6、C【解析】连接
12、AE,只要证明ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,AB是直径,AEB=90,即AEBC,EB=EC,AB=AC,C=B,BAC=50,C= (180-50)=65,故选:C【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题7、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】2.16103米0.00216米故选B【点睛】考查了用科学
13、记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定8、D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可详解:连接OB,AC是O的直径,弦BDAO于E,BD=1cm,AE=2cm在RtOEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,OB=3+2=5,EC=5+3=1在RtEBC中,BC=OFBC,OFC=CEB=90C=C,OFCBEC,即,解得:OF= 故选D点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长9、C【解析】根据图像,结合
14、行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确故选C考点:函数的图象、行程问题10、C【解析】平行四边形ABCD,ADBC,AD=BC,AO=CO,EAO=FCO,在AEO和CFO中,AEOCFO,AE=CF,EO=FO=1.5,C四边形ABCD=18,CD+AD=9,C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 日照 中学 2023 中考 数学 最后 冲刺 浓缩 精华 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内