山东省沂水一中2022-2023学年高考考前模拟数学试题含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《山东省沂水一中2022-2023学年高考考前模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省沂水一中2022-2023学年高考考前模拟数学试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为( )ABCD42函数在上单调递减,且是偶函数,若 ,则 的取值范围是()A(2,+)B(,1)(2,+)C(1,2)D(,1)3下列函
2、数中,既是奇函数,又在上是增函数的是( )ABCD4设 ,则()A10B11C12D135“是函数在区间内单调递增”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件6已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为( )A2kB4kC4D27设等比数列的前项和为,则“”是“”的( )A充分不必要B必要不充分C充要D既不充分也不必要8已知函数,当时,的取值范围为,则实数m的取值范围是( )ABCD9在边长为的菱形中,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为( )ABCD10复数满足,则复数等于()ABC2D-211函数
3、的图像大致为( )ABCD12设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知关于的不等式对于任意恒成立,则实数的取值范围为_14六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有_种(用数字回答).15甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是_16如图所示的流程图中,输出的值为_.三、解答题:共70分。解
4、答应写出文字说明、证明过程或演算步骤。17(12分)在锐角中,分别是角的对边,且(1)求角的大小;(2)求函数的值域18(12分)设,函数,其中为自然对数的底数.(1)设函数.若,试判断函数与的图像在区间上是否有交点;求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.19(12分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.20(12分)已知数列满足(1)求数列的通项公式;(2)设数列的前项和为,证明:21(12分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数
5、的取值范围.22(10分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,.(1)求证:平面.(2)求二面角的大小.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】如图所示:过点作垂直准线于,交轴于,则,设,则,利用均值不等式得到答案.【详解】如图所示:过点作垂直准线于,交轴于,则,设,则,当,即时等号成立.故选:.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.2、B【解析】根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解
6、】根据题意,函数 满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。3、B【解析】奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考查判断函数奇偶性
7、和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.4、B【解析】根据题中给出的分段函数,只要将问题转化为求x10内的函数值,代入即可求出其值【详解】f(x),f(5)ff(1)f(9)ff(15)f(13)1故选:B【点睛】本题主要考查了分段函数中求函数的值,属于基础题5、C【解析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.6、D【解析】分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离
8、为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.7、A【解析】首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,所以“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.8、C【解析】求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.【详解】当时,令,则;,则,函数在单调递增,在单调递减.函数在处取得极大值为,时,的取值范围为,又当时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 沂水 一中 2022 2023 学年 高考 考前 模拟 数学试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内