山东省潍坊市第七中学2023届高考仿真模拟数学试卷含解析.doc
《山东省潍坊市第七中学2023届高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省潍坊市第七中学2023届高考仿真模拟数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边
2、的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是( )A8B7C6D42盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为( )ABCD3函数(),当时,的值域为,则的范围为( )ABCD4已知函数,不等式对恒成立,则的取值范围为( )ABCD5已知满足,则( )ABCD6若复数()是纯虚数,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限7设函数满足,则的图像可能是ABCD8定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足
3、,的取值范围是( )ABCD9已知命题:R,;命题 :R,则下列命题中为真命题的是( )ABCD10在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则( )ABCD11设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,则椭圆的离心率为( )ABCD12若复数满足,则(其中为虚数单位)的最大值为( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为_.14已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率_.15如图,在
4、三棱锥ABCD中,点E在BD上,EAEBECED,BDCD,ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AMCN,则当四面体CEMN的体积取得最大值时,三棱锥ABCD的外接球的表面积为_.16在平面直角坐标系中,已知点,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.18(12分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史
5、上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:日期1234567全国累计报告确诊病例数量(万人)1.41.72.02.42.83.13.5(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系? (2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.参考数据:,.参考公
6、式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:,.19(12分)已知函数.()求在点处的切线方程;()已知在上恒成立,求的值.()若方程有两个实数根,且,证明:.20(12分)如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.(1)求的值;(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.21(12分)设函数,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.22(10分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行
7、量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624()若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关? 是否合格 性别 不合格合格总计男生女生总计()用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;()某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在()的条件下,判断该校是否应调整
8、安全教育方案?附表及公式:,其中.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,
9、改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【点睛】本小题主要考查正方体有关计算,属于基础题.2、C【解析】先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.3、B【解析】首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【详解】因为,
10、所以,若值域为,所以只需,.故选:B【点睛】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.4、C【解析】确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.5、A【解析】利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦
11、公式的应用,考查计算能力,属于基础题.6、B【解析】化简复数,由它是纯虚数,求得,从而确定对应的点的坐标【详解】是纯虚数,则,对应点为,在第二象限故选:B【点睛】本题考查复数的除法运算,考查复数的概念与几何意义本题属于基础题7、B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B8、C【解析】先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 潍坊市 第七 中学 2023 高考 仿真 模拟 数学试卷 解析
限制150内