2022年北京市昌平区2022届初三二模数学试题卷(附答案详解).pdf
《2022年北京市昌平区2022届初三二模数学试题卷(附答案详解).pdf》由会员分享,可在线阅读,更多相关《2022年北京市昌平区2022届初三二模数学试题卷(附答案详解).pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、昌平区2022年初三年级学考第二次统一练习数学试卷2022.5本试卷共6 页,共 100分。考试时长为120分钟.考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将答题卡交回。一、单项选择题(每小题2 分,共 16分)1.斗笠,又名箸笠,即以竹皮编织的用来遮光遮雨的帽子,可以看做一个圆锥,下列平面展开图中能围成一个圆锥的是2.2022年 3 月 2 3 日 15时 40分,“天宫课堂”第二课开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富在中国空间站进行太空授课,全国超过6000万中小学生观看授课直播,其中6000万用科学记数法表示为(A)6000X104(B)6X 107(C)0.
2、6X108(D)6 X 1083.第 24届冬季奥林匹克运动会于2022年 2 月 4 日在北京开幕.2022年北京冬奥会会徽以汉 字“冬”为灵感来源;北京冬奥会的吉祥物“冰墩墩”是以熊猫为原型进行设计创作;北京冬季残奥会的吉祥物“雪容融”是以灯笼为原型进行设计创作.下列冬奥元素图片中,是轴对称图形的是 芟 曾。的(A)(B)(C)(D)4.若 实 数。在数轴上的对应点的位置如图所示,则以下结论正确的是-3-2-1 0 1 2 3(A)同 0(C)a 05.若 a+Q l,则代数式1的值为b )a-b(A)-2(B)-1(C)1(D)26.一个不透明的盒子中装有1 5个除颜色外无其他差别的小球
3、,其中有2个黄球和3个绿球,其余都是红球,从中随机摸出一个小球,恰好是红球的概率为2一15A1-B)52-3/DV1-2XJ7.如图,的直径垂足为E,/A=3 0 ,连接CO并延长交。于点尸,连接尸 ,则NCED的度数为(A)3 0(B)4 5(C)6 0(D)75 8.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (单位:千帕)随气球内气体的体积V (单位:立方米)的变化而变化,P随V的变化情况如下表所示,那么在这个温度下,气球内气体的气压P与气球内气体的体积V的函数关系最可能是V (单位:立方米)6 44 83 8.43 22 4P (单位:千帕)1.522.534(A)
4、正比例函数(B)一次函数(C)二次函数(D)反比例函数二、填 空 题(每小题2 分,共 16分)9 .若代数式 一 有意义,则实数x的取值范围是.x-51 0 .因式分解:3/一6 m+3=.1 1.若正多边形的一个外角度数为6 0 ,则该正多边形的边数=1 2.如图,在平面直角坐标系x Q y中,直线y=3 x与双曲线二(加工0)交 于A,B两点,X若点A,8的横坐标分别为X ,X 2,则工1+超=.1 3 .方程术是 九章算术最高的数学成就,其 中“盈不足”一章中曾记载“今有大器五小器一容三斛(“斛”是古代的一种容量单位),大器一小器五容二斛,问大小器各容几何?”译文:有大小两种盛酒的桶,
5、已知5个大桶加上1 个小桶可以盛酒3斛,1 个大桶加上5个小桶可以盛酒2斛,问 1 个大桶和1 个小桶分别可以盛酒多少斛?设 1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,依题意,可列二元一次方程组为2(x+l)-1I 31 5 .如图,在平面直角坐标系x O y 中,点 A(1,0),B(0,2).将线段A B绕点A 顺时针旋转9 0 得到线段A C,则点C的坐标为.1 6 .下图是国家统计局发布的2 0 2 1 年 2月至2 0 2 2 年 2月北京居民消费价格涨跌幅情况折线图(注:2 0 2 2 年 2月与2 0 2 1 年 2月相比较成为同比,2 0 2 2 年 2月与2 0 2 2 年
6、 1 月相比较称为环比).八 北京市居民消费价格涨跌情况折线图单位 一 一.一一同 比 一-环 比月份根据图中信息,有下面四个推断:2 0 2 1 年 2月至2 0 2 2 年 2月北京居民消费价格同比均上涨;2 0 2 1 年 2月至2 0 2 2 年 2月北京居民消费价格环比有涨有跌;在北京居民消费价格同比数据中,2 0 2 1 年 4月至8月的同比数据的方差小于2 0 2 1年 9月至2 0 2 2 年 1 月同比数据的方差;在北京居民消费价格环比数据中,2 0 2 1 年 4月至8月的环比数据的平均数小于2 0 2 1年 9月至2 0 2 2 年 1 月环比数据的平均数.所 有 合 理
7、 推 断 的 序 号 是.三、解答题(本 题 共 6 8 分,第 1 7-2 2 题,每 小 题 5分,第 2 3-2 6 题,每 小 题 6分,第 2 7-2 8题,每 小 题 7分)解答应写出文字说明,演算步骤或证明过程。1 7 .计算:(1 -7 3)+1-7 2|-2 c o s 4 5 +(-)-1.91 8 .解方程:*=1-x -2 X-21 9 .已知:如图,4 M ON.X求作:N B A D,使N 8 A O=N M O N.下面是小明设计的尺规作图过程.-N作法:在 0M上取一点A,以A为圆心,0A为半径画弧,交射线0A于点B:在射线ON上任取一点C,连 接 8C,分别以
8、2,C 为圆心,大于1次?为半径画弧,两弧2交于点E,尸,作直线E F,与B C交于点D-,作射线A O,即为所求./乂(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下列证明.证明:TEF垂直平分BC,。二-N:.=DC.:AO=AB,:.AD/OC()(填推理依据).N B A D=N M O N.2 0 .已知关于x的一元二次方程f+4x+%=0有两个不相等的实数根,写出一个满足条件&的值,并求此时方程的根.2 1 .如图,在矩形A BC。中,对角线A C,B D交于点、0,分别过点C,。作BO,AC的平行线交于点E,连接0 E交C。于点F.(1)求证:四边形O C E Q是菱
9、形;(2)若 A C=8,N O O C=6 0 ,求菱形 O CE。的面积.2 2 .在平面直角坐标系x O y中,直 线ykx+b(ZW0)与直线y=x平行,且 过 点(2,1),(1)求这个一次函数的解析式;(2)直 线ykx+b(A W0)分别交x,y轴于点A,点8,若点C为x轴上一点,且SAABC=2,直接写出点C的坐标.2 3.如图,在 A BC中,N C=9 0 ,BC,A C与。交 于 点 凡D,B E为。直径,点E在 A 8 上,连接 3D,DE,NADE=NDBE.(1)求证:4 c是。的切线;.3(2)若s iM=m ,。的半径为3,求B C的长.2 4.如图,在一次学校
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 北京市 昌平区 初三 数学试题 答案 详解
限制150内