课程设计(论文)_基于AT89C51单片机的简易数字电压表的设计.doc
《课程设计(论文)_基于AT89C51单片机的简易数字电压表的设计.doc》由会员分享,可在线阅读,更多相关《课程设计(论文)_基于AT89C51单片机的简易数字电压表的设计.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、简易数字电压表的设计摘 要随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。传统的模拟电压表,已有百年的发展历史,虽然经过改进,但是仍然远远不能满足测量的需要。近几十年来随着电子技术的发展,经常需要测量高精度的电压,因此数字电压表应运而生,发展的数度很快。数字电压表作为数字仪表的基础和核心,毫无疑问是电子测量最重要的环节。电压表是测量仪器中不可缺少的设备,目前广泛应用的是采用专用集成电路实现的数字电压表。在测量仪器中,电压表是必须的,而且电压表的好坏直接影响到测量精度。具有一个精度高、转换速度快、
2、性能稳定的电压表才能符合测量的要求。为此,我们设计了数字电压表,本系统以AT89C51单片机为核心,以逐次逼近式A/D转换器ADC0808、七段数码管为主体,设计了一款简易的数字电压表,能够测量0.005.00V的直流电压,最小分辨率为0.02V。关键词: AT89C51单片机; 电压测量; A/D转换; 七段数码管目 录摘 要0引 言11硬件设计2单片机控制模块设计2时钟电路2芯片功能简介2逐次逼近式A/D转换模块设计5七段数码管简介6路数电压显示转换控制电路7 A/D转换电路总体设计72软件设计93 PROTEUS软件仿真103.1 PROTEUS软件简介103.1.1Proteus IS
3、IS的启动103.1.2Proteus ISIS的工作界面11简介11利用Proteus ISIS仿真与调试12总结14参考文献15附录系统源程序16引 言数字电压表的基本工作原理是利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后将测试结果以数字形式显示出来的一种电压表。较之于一般的模拟电压表,数字电压表具有精度高、测量准确、读数直观、使用方便等优点。在测量仪器中,电压表是必须的,而且电压表的好坏直接影响到测量精度。具有一个精度高、转换速度快、性能稳定的电压表才能符合测量的要求。为此,我们设计了数字电压表,此作品主要由A/D0808转换器和单片机AT89C51构成,A/D转换器
4、在单片机的控制下完成对模拟信号的采集和转换功能,最后由数码管显示采集的电压值。电压表的数字化测量,关键在于如何把随时连续变化的模拟量转化成数字量,完成这种转换的电路叫模数转换器(A/D)。数字电压表的核心部件就是A/D转换器,由于各种不同的A/D转换原理构成了各种不同类型的DVM。一般说来,A/D转换的方式可分为两类:积分式和逐次逼近式。积分式A/D转换器是先用积分器将输入的模拟电压转换成时间或频率,再将其数字化。根据转化的中间量不同,它又分为U-T(电压-时间)式和U-F(电压-频率)式两种。逐次逼近式A/D转换器分为比较式和斜坡电压式,根据不同的工作原理,比较式又分为逐次比较式及零平衡式等
5、。斜坡电压式又分为线性斜坡式和阶梯斜坡式两种。在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D转换器。本设计以AT89C51单片机为核心,以逐次比较型A/D转换器ADC0808、七段数码管为主体,构造了一款简易的数字电压表,能够实现自动和手动测量8路0.005.00V的直流电压,最小分辨率为0.02V。1硬件设计单片机控制模块设计单片机控制模块的作用是为控制各单元电路的运行并完成数据的换算或处理,主要由单片机、时钟电路、复位电路组成。时钟电路单片机工作的时间基准是由时钟电路提供的,在单片机的XTAL1和XYAL2两个管脚接一只晶振及两只电容就构成了单片机的时钟电路,电路中电
6、容器和对振荡频率有微调作用,通常取(3010)pF石英晶体选择6MHz或12MHz都可以。时钟电路如图1-1所示。图1-1系统时钟电路 1.1.2AT89C51芯片功能简介主要功能:1.8位CPU;2.片内振荡器频率范围;3.128字节片内数据存储器;4.4KB片内程序存储器5.程序存储器寻址范围64KB;6.片外数据存储器寻址范围64KB;7.21字节专用寄存器;8.4个8位并行I/O口:P0 P1 P2 P3;9.1个全双工串行I/O口;10.2个16位定时器/计数器;11.中断系统有5个中断源,可编程为2个优先级;12.111条指令;13.有很强的位寻址、位处理能力;14.片内单总线结构
7、;15.单一5V电源。MCS-51系列单片机是双列直插式封装的40引脚芯片。如图1-3。图1-3 AT89C51引脚图VCC : 电源GND: 地P0口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0具有内部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。P1口:P1口是一个具有内部上拉电阻的8位双向I/O口,P1输出缓冲器能驱动4个TTL逻辑电平。对P1端口写“1”时,
8、内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。此外,和分别作定时器/计数器2的外部计数输入()和时器/计数器2的触发输入()。 P2口:P2口是一个具有内部上拉电阻的8位双向I/O口,P2输出缓冲器能驱动4个TTL逻辑电平。对P2端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX DPTR)时,P2口送出高八位地址。在这种应用中,P2口使用很强的内部上拉发送1。在
9、使用8位地址(如MOVX RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。P3口:P3口是一个具有内部上拉电阻的8位双向I/O口,P2输出缓冲器能驱动4个TTL逻辑电平。对P3端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。P3口亦作为AT89C51特殊功能(第二功能)使用,在flash编程和校验时,P3口也接收一些控制信号。RST: 复位输入。晶振工作时,RST脚持续2个机器周期高电平将使单片机复位。看门狗计时完成后,RST脚输
10、出96个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。在flash编程时,此引脚(PROG)也用作编程输入脉冲。在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。如果需要,通过将地址为8EH的SFR的第0位置 “1”,ALE操作将无效。这一位置 “1”,ALE仅在执行MOVX或MOVC指令时有效。否则,ALE将被微弱拉高。这
11、个ALE使能标志位(地址为8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。PSEN:外部程序存储器选通信号(PSEN)是外部程序存储器选通信号。当AT89C51从外部程序存储器执行外部代码时,PSEN在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN将不被激活。EA/VPP:访问外部程序存储器控制信号。为使能从0000H到FFFFH的外部程序存储器读取指令,EA必须接GND。为了执行内部程序指令,EA应该接VCC。在flash编程期间,EA也接收12伏VPP 电压。XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。XTAL2:振荡器反相放大器的输出端。1.2逐次
12、逼近式A/D转换模块设计逐次逼近型A/D转换器属于直接型A/D转换器,它能把输入的模拟电压直接转换为输出的数字代码,而不需要经过中间变量。主要由比较器、环形分配器、控制门、寄存器与D/A转换器组成。1.ADC0808引脚功能图1-4ADC0808引脚图IN0IN7:8路模拟量输入。A、B、C:3位地址输入,2个地址输入端的不同组合选择八路模拟量输入。ALE:地址锁存启动信号,在ALE的上升沿,将A、B、C上的通道地址锁存到内部的地址锁存器。D0D7:八位数据输出线,A/D转换结果由这8根线传送给单片机。OE:允许输出信号。当OE=1时,即为高电平,允许输出锁存器输出数据。START:启动信号输
13、入端,START为正脉冲,其上升沿清除ADC0808的内部的各寄存器,其下降沿启动A/D开始转换。EOC:转换完成信号,当EOC上升为高电平时,表明内部A/D转换已完成。2.ADC0808内部结构图逐次逼近型A/D转换器ADC0808由八路模拟开关、地址锁存与译码器、比较器、D/A转换器、寄存器、控制电路和三态输出锁存器等组成。其内部结构如图1-5所示。图1-5ADC0808内部结构1.3七段数码管简介7段LED数码管,是在一定形状的绝缘材料上,利用单只LED组合排列成“8”字型的数码管,分别引出它们的电极,点亮相应的点划来显示出0-9的数字。如图1-6。 LED数码管根据LED的接法不同分为
14、共阴和共阳两类,了解LED的这些特性,对编程是很重要的,因为不同类型的数码管,除了它们的硬件电路有差异外,编程方法也是不同的。右图是共阴和共阳极数码管的内部电路,它们的发光原理是一样的,只是它们的电源极性不同而已。 将多只LED的阴极连在一起即为共阴式,而将多只LED的阳极连在一起即为共阳式。以共阴式为例,如把阴极接地,在相应段的阳极接上正电源,该段即会发光。当然,LED的电流通常较小,一般均需在回路中接上限流电阻。假如将b和c段接上正电源,其它端接地或悬空,那么b和c段发光,此时,数码管显示将显示数字“1”。而将a、b、d、e和g段都接上正电源,其它引脚悬空,此时数码管将显示“2”。依此类推
15、。图1-6 7段LED数码管路数电压显示转换控制电路在电路中电压示数是循环显示的,也可以固定显示,转换的自动和手动模式转换可以通过转换开关按钮来控制。按下转换开关后电压路数固定要想读取相应的电压值可以按下相应的控制按钮来切换。如下图1-7显示图1-7 单路数字电压表实现电路1.5 A/D转换电路总体设计利用AT89C51和ADC0809附加一些外围电路设计出可以采样模拟信号并将其转换成数字电压值在数码管上显示出来,从而可实现测量电压的功能,实现电路如图1-8。图1-8 数字电压表实现电路2软件设计根据硬件电路编写相应的程序,实现电压的采集、转换、处理、显示几个功能,从而实现测量电压的效果。另外
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课程设计 论文 基于 AT89C51 单片机 简易 数字 电压表 设计
限制150内