电池更换站集群优化算法研究报告.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《电池更换站集群优化算法研究报告.docx》由会员分享,可在线阅读,更多相关《电池更换站集群优化算法研究报告.docx(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电池更换站集群优化算法研究报告1 绪论发展新能源车辆是全世界各国应对能源危机和环境保护的主要手段之一,随着锂离子动力电池的使用寿命、能量密度等性能快速提升,各种类型的新能源车辆逐渐进入了大规模的示范应用阶段,某些类型的新能源车辆已经进入商业化阶段,如:日本丰田公司混合动力车已经销售了 100多万辆,美国通用公司的VOLT纯电动轿车2012年销售超过了 6万辆。在国内为推动新能源车辆的发展,推出了 “十城千辆”的电动汽车推广计划,公布了 “关于开展私人购买新能源汽车补贴试点的通知”,“节能与新能源汽车示范推广财政补助资金管理暂行办法”等电动汽车补贴政策。2012年6月28日,国务院印发了 “关于
2、节能与新能源汽车产业发展规划(20122020年)”,确立了纯电驱动为新能源汽车发展和汽车工业转型的主要战略取向,提出了到2015年纯电动汽车和插电式混合动力汽车累计产销量力争达到50万辆;到2020年,纯电动汽车和插电式混合动力汽车生产能力达200万辆、累计产销量超过500万辆产业化目标。充电基础设施网络是大规模的电动汽车商业运行实现的主要支撑环节,其中有关充电基础设施规划布局、充换电站优化设计方法、充换电站经济运行方法以及充换电站与配电网的相互影响关系等问题成为国内外相关研究领域的重点研究内容。1.1 研究背景根据不同纯电动车辆的运行特点以及搭载的动力电池的容量不同,目前主要有以下几种能源
3、补给模式:(1)交流慢速充电充电装置安装在车辆上,地面只提供单相交流电源,电池充电倍率为0.1C0.15C,满充电时间一般在810小时;(2)直流快速充电设立地面充电设备,通过充电设备为车辆提供直流充电输出接口,电池充电倍率为0.3C1C,满充电的时间一般为13小时;(3)电池更换方式电池更换模式是采用事先充满电的电池组替换车辆上需要充电的电池组,满足车辆运行的要求,替换下来的电池组在地面进行充电,电池充电倍率为0.3C1C,满充电的时间一般为13小时。表1-1 纯电动汽车能源补给模式分析特点交流慢充直流快充电池更换优势占地面积小、投资少、安全性好,有利于延长电池使用寿命便于分散安装、满足紧急
4、补电需求节省充电时间,提高车辆利用率、便于集中管理劣势功率小、充电时间长快速充电策略受环境因素影响较大占地面积大、设备投入多、运营成本较高交流慢速充电由于投资成本低、配套资源需求少是未来私人使用的电动乘用车的主要能量补给模式,直流快速充电是交流慢速充电的有效补充,可以为电动乘用车提供应急性的充电服务,而电池更换模式具有的最大特点为:车辆利用率高、电池充电环境好,特别适用于要求车辆运行密度髙的场合,例如:公交车、城市环卫车、出租车等。目前,“十城千辆”试点城市已增至25个;私人购买节能与新能源汽车试点城市已增至6个,包括上海、深圳、长春、合肥、杭州和北京。其中,北京、深圳、合肥、杭州、重庆等城市
5、充电基础设施发展规模较大。北京的纯电动公交车、环卫车和出租车主要以集团用户为主,采用裸车销售、电池租赁、充换结合的运营模式,由北京市电力公司负责充电设施的建设、运营和电池租赁;北京市发改委给予充电设施不高于30%的补贴,北京市给予和国家补贴1:1的配套资金。截止目前,北京示范运营的新能源汽车已达到2457辆,已建设各类充换电站49座。深圳市的纯电动公交车和出租车采用第三方建站运营的模式,充电方式以直流整车充电为主,采用融资租赁、车电分离、网络智能管理、充维结合的运营模,目前已建成并运营57座充换电站,为2303辆新能源汽车提供充换电服务。合肥市电动车辆采用定向采购模式,用户主要是车企员工和合作
6、企业;车辆采用交流慢充的充电方式,集中建站管理。截止2011年底,合肥市共推广新能源汽车2018辆,其中江淮同悦纯电动轿车1585辆。杭州市新能源汽车达1425辆,杭州在公共服务领域,倡导购买新能源汽车的同时探索整车租赁模式。由电池企业购买裸车,连同电池系统一起开展整车租赁,乘用车采用标准电池模块的快速更换模式。重庆市目前已有829辆新能源汽车,2座充换电站,其中比较特色的是铁酸锂电池纯电动公交车,快速充电,满足公交车的使用特性,每68分钟充电一次,每天充电68次。根据中国汽车产业发展报告(2008年)确定的各种车辆在车辆总体保有量的比例,国务院”关于节能与新能源汽车产业发展规划(2012-2
7、020年)”确定的全国电动车辆的总量,以及北京市电动汽车规划中预测到2015年北京市电动汽车数量,利用等比例的方法预测到2020年北京市电动车辆的数量如表1-2。表1-2 2020年北京市纯电动汽车规模预测私人用车公交车出租车公务车数量(万辆)53.30.491.185.03表1-3 2020年北京市充电设施规模预测私人用车公交车出租车公务车数量(万辆)充电桩53.3万个配电容量100MW快充桩0.5万个慢充桩1.3万个1.2 目前换电站设计和运行过程中主要问题目前国内电动汽车换电站已经从初期奥运会、世博会技术验证阶段发展到具有一定规模的商业推广和运行阶段,在这个发展过程中相关核心充电装备、更
8、换装备以及监控系统软硬件等已经实现了产业化,设备性能指标和产品工艺化程度以及可靠性能够满足电池更换和充电的需要,但是从目前推广应用的实际情况看,存在如下的主要问题:(1)换电站主要的服务对象是公交车、环卫车以及出租车等,运行的区域主要集中在城市核心区,占地面积大、配电容量大等缺点使换电站的选址变得非常困难。由于换电站运行需要额外的备用电池和换电设备,使换电站的建设成本相对较高,对换电站的建设和运营方产生了较大的资金压力。(2)换电站的充电负荷受车辆运行的规律影响较大,而大部分公交车运行存在早晚高峰期和平峰期,使换电站的负荷呈现出负荷波动大,高峰负荷出现的时间与其他常规负荷的高峰期接近,不利于城
9、市配电网的移峰填谷,并对换电站外电源的接入带来一定的困难,同时造成换电站的充电电价大部分是峰值电价,造成换电站的运行成本较高。从换电站设计方法和实际运行管理策略角度出发,主要存在以下的问题:(1)核心参数的设计冗余度大目前换电站有关备用电池数量、配电容量、更换装备及更换通道数量等核心参数设计值和实际使用数量之间存在设计冗余度过大的问题,这主要是因为有关换电站相关设计经验少,可用于设计改进的运行数据较少。为保证换电站能满足辆的运行需要,往往设计过程基于车辆和锂电池的的极限参数设计,对公交车运行参数及运行模式对换电站核心参数的影响模式理解不深入,例如:电池充电时间基本按照电池100%放电的充电时间
10、设计、换电站配电功率简单的按运行充电机的最大输出功率计算、不同车辆运行模式对车辆更换频率的影响未考虑等,同时在换电站设计过程中缺乏相应的计算工具,往往通过手工安排发车时刻、电池回站换电时刻等,无法应对车辆多条线路运行模式和车辆多圈运行模式,造成设计过程中冗余度较大,进一步提升换电站的建设成本和占地面积。(2)车辆充电管理策略简单,经济性差目前实际运行的公交车换电站都釆用车辆回站即换电,换电后随即充电的充换电管理策略,并未考虑公交车运行特点、电池充电成本以及换电站负荷特性,造成换电站充电成本高、负荷波动大等问题。实际上在换电站内进行以降低充电电费和改善负荷特性为目标的充电控制策略是可行的,因为公
11、交车存在高峰和平峰的运行规律,而备用电池的充电时间和功率是可在一定范围内进行调节,可以在很大程度上改善换电站的负荷特性和充电经济性。(3)缺乏与城市配电网协调控制技术目前已经运行的公交车换电站数量较少,建设地点往往选在配电条件较好的地区,换电站负荷特性对城市配电网的影响并没有引起研究人员的重视。当换电站在城市核心区的建设规模较大时,准确预测相关换电站充电负荷对配电网的经济运行、区域配电网的稳定运行以及换电站内光伏及储能等新能源的接入意义重大,是相关研究内容的基本手段。1.2 国内外研究现状1.2.1 电动汽车充电负荷预测文献1基于英国乘用车概率统计特性,采用蒙特卡罗方法,给出了一天中PHEV充
12、电负荷与时间的定量关系。文献2基于加拿大温尼伯市的76辆电动汽车,分别采用了基于GPRS和实际充电数据的确定性方法、基于统计分布的蒙特卡洛方法及基于条件密度函数的方法对不同场景、季节和电池容量下的负荷进行了预测和估算。文献3针对匈牙利的具体情况从空间角度对电动汽车充电负荷进行了预测,指出由于充电造成了额外功率需求需要对电网容量进行扩充。文献23以确定纯电动公交车充电站配电容量需求为目标,根据公交客车的运行机制和充电功率曲线特性建立了电动公交充电站容量需求的数学模型。文献4以乘用车为研究对象,分析了电动汽车充电负荷的各自相关因素,根据美国燃油汽车统计数据,建立了电动汽车充电负荷的统计模型,用蒙特
13、卡罗方法得到了电动汽车充电总负荷曲线。文献5在总结我国电动汽车政策和发展趋势的基础上,基于调研结果,分析了私家车、公交车、出租车等不同类型电动汽车的充电方式和充电时段,通过蒙特卡罗方法计算得到了我国未来电动汽车充电负荷曲线,进而分析了充电负荷对电网运行和规划的影响。文献6考虑用户日常驾车模式及充电模式,对电动汽车充电负荷特性进行了分析,并采用蒙特卡罗仿真研究了电动汽车在不同场景下对丹麦配电系统的影响。综上,目前关于电动汽车充电负荷预测的研究主要以电动乘用车为研究目标,从电动汽车的每日行驶里程概率和开始充电时间概率等角度建模,通过燃油车既有数据和统计结果类比或小规模的电动车运行数据统计,主要应用
14、蒙特卡罗方法计算不同时间点各种概率分布的累计结果,而面向以快换模式为主的电动公交车充电负荷预测研究较少,对天气、季节、工作日、电池特性对负荷预测的影响考虑较少,基于电动车大量运行历史数据预测方法没有应用。1.2.2 电动汽车充电负荷控制策略文献7给出了电动汽车换电充裕度的概念,建立了基于一定假设条件的车主用车习惯和充电管理策略的数学模型,主要研究了换电模式下不同时段的充电需求,从而得到应该储备的电池组数量。文献8研究了基于动态电价的充电决定策略,并建立了购买电池原始投资和后期运营成本的经济数学模型,为充电站的运营提供指导。文献9-11综述了国内外关于电动汽车接入电网的研究现状及电动汽车充电对电
15、网的影响,并对电动汽车接入电网的解决方案和利用进行了分析,文献12利用充电负荷具有时空双尺度的可调节特性,在时间和空间上进行双尺度的负荷调度,使电动汽车充电能够在满足用户需求的基础上,还能对电网运行产生积极的作用。文献13针对电动汽车无序充电造成电网“峰上加峰”的问题,以换电站各时刻的充电功率为控制对象,建立多目标的调度策略数学模型,并采用自适应变异的粒子群算法求解,有效地降低电网峰谷差,达到平稳负荷波动的效果。文献14建立了一个以配电网网损最小为目标的电动汽车充电优化模型,研究如何优化电动汽车充电过程以降低网络损耗,从而达到配电网经济运行的目的。文献15基于网损灵敏度,以网损和充电成本最小为
16、目标,来安排电动汽车的充电,实现电动汽车的实时有序充电控制,达到降低配电网网络损耗和平抑负荷的目的。文献16分别建立了电动汽车放电用户、电力企业的成本效益分析模型,分析了电动汽车入网高峰放电削峰填谷的成本和收益。综上,上述的研究主要以乘用车为对象,利用粒子群、遗传等智能优化算法对电动汽车充电时间和充电功率进行控制,从电网损耗、电价以及顾客等待成本等方面进行优化,从实现用户和电网双方利益的目标。专门针对纯电动公交更换充电站的研究不多,特别在换电站的优化调度和经济运行方面的研究鲜有相关成果见诸报端。在电动汽车充电时间和充电功率的调控模型建立中,假设条件和电动汽车真实运行情况有一定的差异,在控制方法
17、上以充电功率控制为主,对充电设备利用率、锂离子电池充放电功率对电池寿命的影响分析较少,利用电动汽车真实运行数据作为对比分析的研究结果未见应用。2 充放电机的集群控制调度策略设计方法2.1 纯电动公交车换电站基本组成图1-1典型换电站平面拓扑结构图1-1所示是一座典型换电站的平面拓扑结构,其一般主要由配电室、监控室、电池更换区、电池充电区、电池维护区等部分组成,各部分功能单元说明如下:配电室:换电站的配电室包括充电机动力配电和其它站内用电配电两部分。通过独立的变压器一部分用于充电机充电,另一部分用于满足照明、计量及控制设备等站用负荷的供电。监控室:监控室用于监控充电机的运行情况、数据库管理和报表
18、打印等工作。电池更换区:需要更换电池的车辆驶入电池更换区进行电池更换,是用于更换电池的场所。另外,需要应急充电的车辆也停靠在电池更换区,通过充电延长线引到车体上进行充电。电池充电区:用于摆放更换下来的动力电池组对其进行充电,主要包括充电机和充电平台。内有充电机设备、电池管理系统供电、电池管理系统内部网络、充电机与充电平台之间的通讯网络接口等。电池维护区:电池维护区包括蹄选和维护、充电间以及备用电池库。电池进入维护车间后,进行电池的蹄选,确定电池的好坏,不能使用的电池作恰当处理,避免污染环境;可继续使用的电池进行维护和活化。维护完后的电池送至充电区进行充电,充满电后进行装箱编组。如图1-2所示,
19、换电站整体运作流程首先是需要更换电池的车辆进站后驶入更换电池区,进行故障诊断,出具电池故障诊断报告,然后更换上已经充满电的整组电池,最后返回停车区。更换下来的电池按有无故障就地分离,故障电池送维护车间进行蹄选、维护、充电和装箱,无故障电池送充电区以单箱电池为单元进充电,充满电后进行编组,所缺电池箱由维护车间的备用电池库补齐后按组为单位送至更换电池库。图1-2 换电站运作流程图2.2 智能优化算法换电站通过更换电池的方法来提高公交车辆利用率,但目前采用的电池换电原则会造成充电负荷受到公交车早晚高峰以及夜间停运的影响,主要负荷集中在电价的高峰段造成充电费用高,进一步加重区域配电网的峰谷差。通过对实
20、际备用电池等待使用时间的分析发现从电池充电完毕到下一次使用之间会有较长的等待时间,可以利用合理的优化算法对电池开始充电时间进行调控,使充电电价尽可能的集中在平峰段和谷段,实现充电费用最低和减小充电负荷的峰谷差。人工鱼群算法是一种随机搜索算法,是群智能算法的一种。通过构造人工鱼来模仿鱼群的觅食、聚群、追尾及随机行为,从而实现群体全局寻优。该算法虽具有较快的收敛速度和较好的求取全局极值的能力,但存在一些缺点,如人工鱼群算法的参数(可视域visua、步长step、最大尝试次数trynumber、拥挤度因子)设定是固定的,这样获得的最优解精度不高,而且各个人工鱼行为存在一些缺陷。为了克服这些缺点,本文
21、提出了自适应改进行为人工鱼群算法。图2-1 智能优化算法流程图2.2.1 自适应改进行为人工鱼群算法的自适应性自适应改进行为人工鱼群算法的自适应性,具体体现在算法寻优程序在执行过程中重要参数的自动修正上。改进方式如下所述:在算法的初始阶段,每条人工鱼在较大的可视域visual内以较大的移动步长step寻找较优解,从而扩大了算法的搜索范围。随着算法的迭代进行,自适应地减小可视域visual和移动步长step,从而自动的加快算法的收敛速度和有效地提高算法的求解精度。具体实现方式请见式子(2-2-1): (2-2-1)式中visualmin 可视域最小值,取0.001;stepmin 移动步长最小值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电池 更换 集群 优化 算法 研究 报告
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内