电信行业-马尔可夫完美均衡的概念.docx
《电信行业-马尔可夫完美均衡的概念.docx》由会员分享,可在线阅读,更多相关《电信行业-马尔可夫完美均衡的概念.docx(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 电信定价的马尔可夫完美均衡郝朝艳 平新乔No.C2002018 2002年12月30日电信定价的马尔可夫完美均衡郝朝艳 平新乔 摘要:本文主要利用Pakes-McGuire计算马尔可夫完美均衡的方法,使用Gauss程序模拟预测未来电信价格的理论均衡值。文章按照投资改变效率水平的方式以及均衡类型的不同组合进行模拟。虽然在不同情况下均衡值不同,但均低于目前的实际价格。因此,根据我们模拟的结果,在未来的竞争中,电信价格会下降大约20%40%。 电信行业一直以来被视为“自然垄断行业”,因为它的网络部分存在大量的固定成本,而提供服务的边际成本很低,重复建设一个网络对电信行业的厂商和社会而言都是无利可图
2、的。电信行业又是一个高度规制的行业。然而这样的市场结构中存在着问题 参见电信竞争(Competition in Telecommunications),(法)让雅克拉丰(Jean-Jacques Laffont),让泰勒尔(Jean Tirole),人民邮电出版社。:首先,垄断者没有来自竞争的压力因而缺乏降低成本的动力。降低成本的动力是未来定价的基础:垄断者为了弥补收入的不足必然会相应的调整价格,在这种情况下,受回报率规制的“成本加成”特性不会带来令人满意的成本和价格行为。其次,价格结构扭曲,单价由相当随意的成本分摊一类的会计程序所决定, 而与企业合理的商务活动联系甚少。这些内部因素对电信行业
3、的改革起到了推动作用,同时技术创新使得电信行业的规制逐渐放松,行业内的竞争逐步形成。我国的电信行业长期垄断经营,直到1994年,我国在基础电信领域才引入了第一家与传统中国电信竞争的电信企业中国联通。目前,中国已经加入了世界贸易组织(WTO),承诺电信行业对外资开放。作为已经占领了国内市场的中国自己的电信企业,在面对国际上资金雄厚、技术先进、适应了有效竞争市场机制的潜在进入者,在电信定价方面应该采取什么样的策略呢? 本文虽然没有对电信定价的理论进行讨论和发展,但本文的贡献在于:利用模拟(simulation)的方法,预测我国电信行业引入竞争后的均衡价格,并且讨论了在厂商选择竞争、共谋和从社会福利
4、最大化角度出发对均衡价格、厂商利润和消费者剩余的影响。电信行业的规制和定价是一个长期的动态问题,因此文章中的理论分析使用了动态规划的方法,讨论电信定价的马尔可夫完美均衡。 本文共分为五个部分:第一部分,介绍基本概念和基本分析方法;第二部分,文献综述,介绍马尔可夫完美均衡的理论发展和部分应用;第三部分,理论模型,这是后续工作的理论基础;第四部分,模拟方法准确性的检验和模拟参数的确定;第五部分,使用模拟方法预测未来电信价格的马尔可夫完美均衡,同时给出厂商在选择竞争、共谋以及社会福利最大化不同情况下对均衡价格、厂商利润和消费者剩余的影响。第六部分,结论。一、 基本概念和方法: 我们这里从动态角度考虑
5、电信定价问题,引入了马尔可夫完美均衡(Markov Perfect Equilibrium)的概念。马尔可夫完美均衡简单来说要满足两条性质:第一,马尔可夫性,即给定过去的状态和本期的状态,将来状态的条件概率分布只依赖于现在的状态而与过去的状态独立。用数学语言可以表述为: ;第二, 所有的纳什均衡都是子博弈完美均衡。具体说,在本文中我们讨论的马尔可夫完美均衡是指从博弈树的任何一点开始,每个厂商以各自预期利润贴现值的最大化为目标,给定厂商和其他厂商的后序行动,这个厂商的策略是纳什均衡,厂商的策略函数满足马尔可夫性质。 本文的主要目标是以目前的情况作为初始状态,计算电信价格的马尔可夫完美均衡,作为未
6、来理想电信价格的预测值,以此为标准判断现在的电信价格是否高于或低于理想值,要达到理论的理想价格,需要在多大程度上调整目前的电信价格。 本文的计算方法使用的是动态规划方法:首先将一个求解未来预期利润最大化的问题转化为求解值函数的问题 严格的说,需要证明这两个问题是等价的。,然后通过迭代方法计算,在紧缩映射定理成立的条件下迭代计算的结果是收敛的。构造欧拉方程,使用包络定理,就可以得到我们所需要的均衡值函数和策略函数。 关于动态规划方法的详细内容及其相关定理的论述和证明,请参考经济动态学中的迭代方法(Recursive Methods in Economic Dynamics, Nancy L.St
7、ocky and Robert E. Lucas, Jr. Harvard University Press , Cambridge Massachusetts and London England, 1989)。 由于计算过程极为复杂,计算量极大,我们使用Gauss计算软件进行模拟。在进行运算之前,需要确定一些参数的数值。这些参数具体的经济含义会在本文第三部分“理论模型”中给出,它们刻画了现实经济的一些性质。因此,要使我们模拟的结果具有实际意义,首先必须保证我们对这些描述现实经济环境的参数的估计是准确的。很自然,我们的思路就是:利用已经得到的数据估计参数值,再用这些参数去模拟预测未来理想的电
8、信价格。这里最重要的两个参数是:D,即需求函数的截距项和MC,即边际成本。由于我们使用了已有的Gauss程序,程序中对参数值的取值范围有一定的限制并且对函数形式也有要求,因此我们需要将参数计量回归的估计值进行处理后才能使用。具体的估计方法和数据的处理请见第四部分“系数确定”。 得到参数值之后,下面的工作就是本文的重点内容:使用Gauss计算软件模拟均衡价格。由于本文中使用的数据是我国移动通讯的数据,所以我们只讨论移动通讯业务的定价问题。针对目前我国电信市场的实际情况:在我国的移动通讯市场上,在位者是中国移动通信和中国联通两家企业,面对加入世界贸易组织后有潜在进入者竞争的情况,我们从市场中有两个
9、厂商开始,又模拟了市场中有三个、四个厂商的情形。这一方面是由于计算机硬件条件的限制,我们现在只能模拟出市场中最多有四个厂商的情况,厂商数目更多的情况无法计算;另一方面,我们在前面已经提到,电信行业是一个具有“自然垄断”性质的行业,在这样的行业中,多家企业进入是无利可图的,因此,我们只考虑到行业中有四家厂商的情况是能够说明问题的。在给定厂商个数的情况下,分别讨论了商品是异质和同质的情况:即投资改变商品质量(商品异质)和投资改变厂商的生产能力(capacity)(在讨论投资改变厂商生产能力时,假设了不同厂商提供的商品是同质的)。在这两种情况中,我们又按照三种不同的均衡类型分别进行模拟,这三种均衡类
10、型为:厂商之间互相竞争的马尔可夫纳什均衡、厂商之间共谋时的均衡以及以社会福利最大化作为目标函数时的均衡。我们要得到以下结果:第一、厂商数目对均衡价格的影响及其程度;第二、不同的均衡类型得到的均衡价格有何差异;第三、不同均衡类型对消费者剩余和厂商利润有何影响;第四、参数值的变动对均衡结果有何影响;第五、在上面结果的基础上,判断目前电信价格调整的方向和幅度。二、 文献综述: 本文所涉及到的文献主要集中于两个方面:第一、关于马尔可夫完美均衡的论述;第二、马尔可夫完美均衡的应用和计算。 Jean Tirole在Markov Perfect Equilibrium中详细介绍了马尔可夫完美均衡的概念。 E
11、ric Maskin 和Jean Tirole在80年代末发表了三篇很有影响的将马尔可夫完美均衡的概念应用于动态垄断理论的文章。在A Theory of Dynamic Oligopoly, I: Overview and Quantity Competition With Large Fixed Costs中,Eric Maskin 和Jean Tirole引入了交替行动的无穷期的双寡头博弈模型,使用动态规划的方法计算均衡。文章中马尔可夫完美均衡的含义是:参与者即寡头的策略仅仅依赖于他的对手目前所承诺的行为。这篇文章的主要目的是用动态博弈模型分析固定成本很高的自然垄断行业。文章假设了两个厂商
12、在数量(capacities or quantities)上竞争,并且证明了马尔可夫完美均衡的存在和唯一性。基本结论是:在达到均衡时,行业中只有一个厂商存在,如果折现率不是很低,为了阻止竞争者进入行业,在位者的产量会高于纯寡头垄断的情况。而这个动态模型的另外一个应用就是Eric Maskin 和Jean Tirole的A Theory of Dynamic Oligopoly,II:Price Competition, Kinked Demand Curves, and Edgeworth Cycles。文章中马尔可夫完美均衡的概念与上面的含义有所不同:厂商的策略只由参与者的行动决定,每个参与
13、者的价格决策是其他参与者当期价格的函数。他们推导出两种均衡:埃奇沃斯环(Edgeworth Cycles)和弯曲的需求曲线(Kinked Demand Curves)。模型中,厂商以伯兰特(Bertrand)方式进行价格竞争,互相削价以增加市场份额,直到价格战的成本变得非常高或者某个厂商忽然提高了价格。第三篇文章是:A Theory of Dynamic Oligopoly, III:Cournot Competition 。 在2000年末Drew Fundenberg 和Jean Tirole合作发表的Pricing a Network Good To Deter Entry 中,用马尔可
14、夫完美均衡的概念分析了如果行业中只有一个网络商品(network good)的提供者,他如何定价以阻止新厂商进入的问题。我们可以看到:一方面,如果进入者的网络商品与在位者的商品不相容并且存在需求的网络外部性,那么在位者已有的网络商品的用户基础可以起到类似于投资的作用,阻止进入发生;另一方面,潜在进入者的进入威胁迫使在位者降低价格。文章讨论马尔可夫完美均衡并用动态规划的方法求解均衡。 在上面提到的Pricing a Network Good To Deter Entry一文中,Drew Fundenberg 和Jean Tirole使用了两代人的世代交替模型。与此相近的是Toker Dogano
15、glu的两篇文章,它们都建立了两代人的世代交替模型,都讨论了马尔可夫完美均衡的结果。Dynamic Price Competition with Persistent Consumer Tastes讨论了价格竞争的动态博弈。文中首先给出了稳定的马尔可夫完美均衡存在的条件。当马尔可夫完美均衡存在时,最优的定价策略表明,如果其他条件均相同,原来具有较高市场份额的厂商会选择较高的定价。本文中,消费者的偏好稳定,即消费者对商品的评价不随时间而改变是一个重要的假设,在此假设条件下,厂商之间的价格竞争更为激烈,因为均衡价格要低于消费者偏好改变的情况。同时这条假设使得向均衡结果收敛的速度很缓慢。在另一篇文章
16、Experience Goods, Switching Costs and Dynamic Price Competition中,Toker Doganoglu讨论的重点放在了转移成本(switching costs)存在的情况。他建立了Hotelling 模型,首先假设了双寡头的市场份额是分别给定的,由于消费者对商品消费所带来的满意度存在不确定性,消费者就会从对一个品牌转移到另外一个品牌,但是要承担转移成本,这是与前一篇文章的不同之处。转移成本的大小会影响到均衡结果:当转移成本足够低时,均衡价格甚至会低于没有转移成本时的均衡价格,转移成本的存在,大大减少了厂商的利润,使得价格接近于边际成本。
17、同样,这篇文章也讨论了马尔可夫完美均衡,并且支持了作者在上文中提到的市场份额高的厂商定价高的结论。 在马尔可夫完美均衡计算方面的主要贡献来自于Ariel Pakes和Paul Mcguire的一系列文章。他们的文章中模型设定都很一般化,没有很强的假设条件,理论推导的主要目的是指出计算马尔可夫完美均衡的方法以及编程思路,并且在每一篇文章中都给出了实际模拟的例子和模拟结果。他们的模型我们会在第三部分“理论模型”中详细介绍,这里不再赘述,仅仅分析一下每篇文章的不同之处。Markov-Perfect Industry Dynamics: A Framework for Empirical Work的理
18、论部分讨论了在产品是同质的假设条件下,厂商进入、退出、投资、定价决策。在Computing Markov-perfect Nash equilibria: numerical implications of a dynamic differentiated product model的前半部分中,讨论了产品是异质的情况下,厂商之间在价格方面伯兰特方式进行竞争的情况,分析了厂商进入、退出、投资、定价决策。文章的后半部分详细介绍了如何计算马尔可夫完美均衡,这里主要运用动态规划的迭代方法。文章也同时指出,当厂商数目增加时,运算量以指数倍数增加,这使我们很自然的想到,在分析实际问题时,应该借助于计算机
19、,利用某些计算软件完成运算。非常幸运的是,Ariel Pakes和Paul Mcguire给出了Gauss程序和C语言程序。 这些程序可以通过以下方式的到:用ftp连接到“econ.yale.edu”用“anonymous”作为用户名,使用者的者真实性名作为口令(password)登入,在目录“pub/mark-eqm”中可以找到所有的程序文件。 Implementing the Pakes-McGuire Algorithm for Computing Markov Perfect Equilibria in Gauss总结了以上两篇文章的理论和主要结论,其目的是为编写Gauss程序提供思路
20、。 本文只是用了Gauss程序进行模拟,Ariel Pakes和Paul Mcguire 在文章中曾经提到:用C语言程序模拟速度高于Gauss程序。三、 理论模型:我们在这里直接引用了Ariel Pakes和Paul Mcguire的模型没有做任何修改,原因有两点:第一、Ariel Pakes和Paul Mcguire的模型中没有很强的假设,是一个很一般化的模型,基本符合我们所要讨论的实际情形;第二、我们在下面模拟中,使用了Ariel Pakes和Paul Mcguire依据自己的理论模型给出的Gauss程序,因此,要使得模拟的结果有意义,我们所分析的问题必须纳入到Ariel Pakes和Pa
21、ul Mcguire的理论框架中。首先考虑产品是同质的情况。每个厂商以预期利润折现值的最大化作为目标函数,在每个时期的期初决定进入/退出行业,是否进行投资、投资的数量,用x表示。每单位投资要支付成本c()。 每个厂商的盈利能力用它的效率水平(efficiency level )衡量,用表示。但的值是一个相对水平,它等于厂商的实际效率水平与行业外某个标准的效率水平的差值。因此,的变动受到两个因素的影响:第一、行业外标准效率水平的变动:如果厂商实际的效率水平保持不变,标准效率水平升高,厂商的值减小;第二、投资可以增加厂商的效率水平,也就是的值。但在文中假设投资增加效率水平的值是边际递减的,即效率水
22、平存在一个最小上界,当值接近这个上界时,厂商便不会再投资,因为投资增加效率得到的回报不足以抵补投资的成本。不妨把这个最小上界记做,同时不妨令效率水平的下界为0,其含义是,如果企业的效率水平为负值,他会选择退出行业。 我们记行业外标准效率水平的变化为,它服从概率分布。企业投资使得效率水平的变动为。这里假设和每个时期变动幅度为1。和的取值及其概率分布由下式给出:= (1)= (2) 记本期的效率水平为,下一期的效率水平为,则有下面的三个等式成立,它们刻画了效率水平在两期之间变化的规律: Prob(=+1|x, )=Prob(=|x, )=Prob(=-1|x, )= 在每个时期,厂商的收入由厂商的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电信行业 马尔可夫 完美 均衡 概念
限制150内