高三数学重要知识点总结归纳大全.pdf





《高三数学重要知识点总结归纳大全.pdf》由会员分享,可在线阅读,更多相关《高三数学重要知识点总结归纳大全.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学重要知识点总结归纳大全2022高三数学重要学问点总结11.课程内容:必修课程由5 个模块组成:必修1:集合、函数概念与基本初等函数(指、对、嘉函数)必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。必修4:基本初等函数(三角函数)、平面对量、三角恒等变换。必修5:解三角形、数列、不等式。以上是每一个高中同学所必需学习的。上述内容掩盖了高中阶段传统的数学基础学问和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些学问的发生、进展过程和实际应用,而不在技巧与难度上做过高的要求。
2、此外,基础内容还增加了向量、算法、概率、统计等内容。2.重难点及考点:1重点:函数,数列,三角函数,平面对量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:集合与简易规律:集合的概念与运算、简易规律、充要条件函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用平面对量:有关概念与初等运算、坐标运算、数量积及其应用不等式:概念与性质、均值不等式
3、、不等式的证明、不等式的解法、确定值不等式、不等式的应用直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用直线、平面、简洁几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量2排列、组合和概率:排列、组合应用题、二项式定理及其应用概率与统计:概率、分布列、期望、方差、抽样、正态分布导数:导数的概念、求导、导数的应用复数:复数的概念与运算高三数学重要学问点总结2正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).正棱锥的高、斜
4、高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.特殊棱锥的顶点在底面的射影位置:棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.棱锥的顶点毕竟面各边距离相等,则顶点在底面上的射影为底面多边形内心.3三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.每个四周体都有外接球,球心0 是各条棱的中垂面的交点,此点到各顶点的距离等于球半
5、径;每个四周体都有内切球,球心是四周体各个二面角的平分面的交点,到各面的距离等于半径.注:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.()(各个侧面的等腰三角形不知是否全等)i i .若一个三角锥,两条对角线相互垂直,则第三对角线必定垂直.简证:A B C D,A C B DB C A D.令得,已知则.i i i .空间四边形O A B C 且四边长相等,则顺次连结各边的中点的四边形确定是矩形.i v.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是确定是正方形.简证:取A C 中点,则平面9 0 易知E F GH为平行四边形4E F GH为长方形.若对角线等,则为正
6、方形.高三数学重要学问点总结3立体几何初步(1)棱柱:定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何
7、特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。5(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面开放图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:底面是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 重要 知识点 总结 归纳 大全

限制150内