毕业论文-线直一级倒立摆控制器设计课程设计报告4.doc
《毕业论文-线直一级倒立摆控制器设计课程设计报告4.doc》由会员分享,可在线阅读,更多相关《毕业论文-线直一级倒立摆控制器设计课程设计报告4.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、哈 尔 滨 工 业 大 学哈尔滨工业大学控制科学与工程系控制系统设计课程设计报告 姓 名: 院(系):英才学院专 业:自动化 班 号: 任务起至日期: 课程设计题目: 直线一级倒立摆控制器设计已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为:M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。设计要求:1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。
2、2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为:(1)稳定时间小于5秒;(2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度和小车位移x的稳定时间小于3秒(2)x的上升时间小于1秒(3)的超调量小于20度(0.35弧度)(4)稳态误差小于2%。工作量:1.建立直线一级倒立摆的线性化数学模型;2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试;3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。工作计划安排:第3周:(1)建立直线一
3、级倒立摆的线性化数学模型; (2)倒立摆系统的PID控制器设计、Matlab仿真; (3)倒立摆系统的极点配置控制器设计、Matlab仿真。第4周:实物调试; 撰写课程设计论文。同组设计者及分工: 各项工作独立完成指导教师签字 年 月 日 教研室主任意见:教研室主任签字 年 月 日 *注:此任务书由课程设计指导教师填写。一直线一阶倒立摆简介倒立摆是进行控制理论研究的典型实验平台。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻
4、省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制
5、、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。 平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。一阶倒立摆系统的结构示意图如下所示: 摆杆小车 滑轨 电机 图1-1 一阶倒立摆结构示意图系统组成框图如下所示:倒立摆伺服驱动器运动控制卡伺服电机计算机光电码盘1光电码盘2图1-2 一级倒立摆系统组成框图 系统是由计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分组成的闭环系统。光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,白干的角度、角速度信号由光电码盘2反馈给运动控制卡。计算机从运动控制卡中读取实时数据,确定控制决策(小车
6、运动方向、移动速度、加速度等),并由运动控制卡来实现控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动吗,保持摆杆平衡。二直线一阶倒立摆数学模型的推导首先建立一阶倒立摆的物理模型。在忽略空气阻力和各种摩擦之后, 可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。图 2-1 直线一阶倒立摆模型系统内部各相关参数定义如下:M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 摆杆与垂直向上方向的夹角 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)1. 一阶倒立摆的微分方程模型对一阶倒立摆系统中
7、的小车和摆杆进行受力分析,其中,N和 P为小车与摆杆相互作用力的水平和垂直方向的分量。图 1-2 旋转臂及摆杆受力图 分析小车水平方向所受的合力,可以得到以下方程: (1-1)由摆杆水平方向的受力进行分析可以得到下面等式: (1-2)即: (1-3)把这个等式代入式(1-1)中,就得到系统的第一个运动方程:(1-4)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程: (1-5)即: (1-6)力矩平衡方程如下: (1-7)由于所以等式前面有负号。合并这两个方程,约去 P和 N,得到第二个运动方程: (1-8)设 ,(是摆杆与垂直向上方向之间的夹角),假设 1弧
8、度, 则可以进行近似处理:。用u代表被控对象的输入力F,利用上述近似进行线性化得直线一阶倒立摆的微分方程为: (1-9)2. 一阶倒立摆的传递函数模型对式(1-9)进行拉普拉斯变换,得:(2-1)注意:推导传递函数时假设初始条件为 0。由于输出为角度,求解方程组的第一个方程,可得:(2-2)或 (2-3)如果令,则有: (2-4) (2-5)把上式代入方程组(2-1)的第二个方程,得:整理后得到传递函数:(2-6)其中。3. 一阶倒立摆的状态空间模型设系统状态空间方程为: (3-1)方程组(2-9)对解代数方程,得到解如下:(3-1)整理后得到系统状态空间方程:(3-2)(3-3)摆杆的惯量为
9、,代入(1-9)的第一个方程为:得:化简得:(3-4)设, 则有:(3-5)4.实际系统的传递函数与状态方程实际系统的模型参数如下:M 小车质量 0.5 Kg m 摆杆质量 0.2 Kg b 小车摩擦系数 0 .1N/m/sec l 摆杆转动轴心到杆质心的长度 0.3m I 摆杆惯量 0.006 kg*m*m代入上述参数可得系统的实际模型。摆杆角度和小车位移的传递函数:(4-1) (4-2)摆杆角度和小车加速度之间的传递函数为: (4-3)摆杆角度和小车所受外界作用力的传递函数:以外界作用力作为输入的系统状态方程:(4-4)以小车加速度为输入的系统状态方程:(4-5) 5.系统阶跃响应分析上面
10、已经提到系统的状态方程,先对其进行阶跃响应分析,在Matlab中键入以下命令:得到以下计算结果:图 2-2 直线一级倒立摆单位阶跃响应仿真可以看出,在单位阶跃响应作用下,小车位置和摆杆角度都是发散的。三一阶倒立摆PID控制器设计设计指标要求:设计PID控制器,使得当在小车上施加0.1N的阶跃信号时,闭环系统的响应指标为:(1) 稳定时间小于5秒;(2) 稳态时摆杆与垂直方向的夹角变化小于0.1弧度。1. PID控制分析在模拟控制系统中,控制器最常用的控制规律是PID控制。常规PID控制系统原理框图如图3-1所示。系统由模拟PID控制器KD(s)和被控对象G(s)组成。图 3-1 常规PID控制
11、系统图PID控制器是一种线性控制器,它是根据给定值r(t)与实际输出值y(t)构成控制偏差e(t)将偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对被控对象进行控制,故称PID控制器。其控制规律为或写成传递函数的形式式中:比例系数;积分时间常数;微分时间常数。在控制系统设计和仿真中,也将传递传递函数写成式中:比例系数;积分系数;微分系数。简单说来,PID控制器各校正环节的作用如下:(1) 比例环节:成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减少偏差。 (2) 积分环节:主要用于消除稳态误差,提高系统的型别。积分作用的强弱取决于积分时间常数
12、,越大,积分作用越弱,反之则越强。 (3) 微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。 这个控制问题和我们之前遇到的标准控制问题有些不同,在这里输出量为摆杆的位置,它的初始位置为垂直向上,我们给系统施加一个扰动,观察摆杆的响应。系统框图如图3-2所示:图3-2 直线一级倒立摆闭环系统图图中KD(s)是控制器传递函数,G(s)是被控对象传递函数。考虑到输入r(s)=0,结构图可以很容易地变换成图3-3 直线一级倒立摆闭环系统简化图该系统的输出为其中: num被控对象传递函数的分子项 den
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业论文 一级 倒立 控制器 设计 课程设计 报告
限制150内