对机械能守恒的理解(共8页).doc
《对机械能守恒的理解(共8页).doc》由会员分享,可在线阅读,更多相关《对机械能守恒的理解(共8页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上对机械能守恒的理解扬州市宝应县画川高级中学 于 锋随着学习的深入,机械能守恒定律的内容和深度在不断的拓展,由最初的物体在只有重力做功情况下机械能守恒,拓展到含有弹簧的系统机械能守恒,以及多物体的系统机械能守恒问题。机械能守恒定律在教科版教材(必修2)中是这样表述的:在只有重力或弹力做功的物体系统内,动能与势能会发生相互转化,但机械能的总量保持不变。机械能守恒定律的条件拓展为:系统内各物体间发生动能、重力势能、弹性势能的相互转移或转化,而没有转化为其他形式的能量时,系统的机械能就守恒。它是力学中的一条重要定律,是更普遍的能量守恒定律的一种特殊情况。一、机械能守恒条件的全
2、面理解1、从功和能的关系角度理解从功能关系的角度看,重力(弹簧的弹力)做功不会改变物体的机械能,除重力(弹簧的弹力)之外的其他力做功必然发生机械能的转化或转移。因此,只有重力(弹簧的弹力)做功可具体表现为三种情况:(1)只受重力(弹簧的弹力)而不受其他力的作用。如自由落体和各种抛体运动(不计空气阻力)。(2)还受其他力作用,但其他力不做功。如物体沿固定的光滑曲面运动,尽管受支持力作用,但它不做功。(3)其他力做功,但做功的代数和为零。情景1如图1所示,一固定的楔形木块,其斜面倾角为30,另一边与地面垂直,顶上有一定滑轮。一条柔软的细线跨过定滑轮,两端分别与物块A和B连结,A的质量为4m,B的质
3、量为m,开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。物块A与斜面间无摩擦。设当A沿斜面下滑S 距离后,细线突然断了。求物块B上升离地的最大高度H。分析绳中的拉力TA和TB都做功,这时A和B各自的机械能都不守恒,但WAWB0,因此,对A和B构成的系统只有重力做功,总的机械能守恒。 对由A和B构成的系统,由机械能守恒定律得: 细线突然断后,B做竖直上抛运动,由机械能守恒定律得: 2从能量转化的角度理解从能量转化角度看,机械能守恒定律是普遍的能的转化与守恒定律的特殊情况,就是指无其他形式的能量(力学中特别是指与摩擦和介质阻力相关的热能)参与转化,只发生动能和势能相互转化的过程,机械
4、能的总量保持不变。 情景2如图2所示,小物块位于光滑斜面上,斜面位于光滑水平地面上,在小物块沿斜面下滑的过程中,从能量转化的角度分析:由于地面和斜面都是光滑的,没有热能的转化,只有动能和势能参与转化,而斜面的机械能不断增加。因此,斜面的机械能增加一定来自物块的机械能减少,但斜面与物块组成的系统总的机械能守恒。但如果由功能关系出发,虽然可以分析出由于两者间的相对运动,斜面受的压力和物块受的支持力与位移都不垂直,都各自做了功,各自的机械能一定改变,但是要确定该系统的机械能是否守恒,这时就需要确定是否等于零,这在中学阶段是有一定难度的。通过以上分析,笔者认为可以达成如下共识:就守恒条件而言,前者侧重
5、于能量转化的原因,即只有重力(弹簧的弹力)做功,描述更充分,更严谨,有利于学生对功和能关系的深刻理解,从而突出过程中各力做功情况的分析,判断能的转化情况;而后者侧重于能量转化的现象和结果无其他形式的能参与转换,只发生动能和势能的相互转化,描述更通俗,更普遍,有利于学生从能量的形式和增减现象入手判断能量的转化情况,树立更广泛意义上的能量转化思想和利用能量守恒分析问题的方法。二、机械能守恒定律的表达式随着机械能守恒定律的拓展,可以从三个角度用方程表达机械能守恒定律。1从守恒的角度在所研究的过程中,任选两个不同的状态,研究对象的机械能必定相等,即 。通常我们关心的是一个过程的首、末两状态,此式也可理
6、解成首、末两状态机械能相等,但应注意的是,首、末两状态机械能相等,不能保证研究对象在所研究过程中机械能一定守恒,只有在过程中任选一个状态,其机械能都保持恒定值时,研究对象的机械能才是守恒的。选取某一平面为零势能面,如果含有弹簧则弹簧处于原长时弹性势能为零,系统末状态的机械能和初状态的机械能相等。即:Ek末+Ep末= Ek初+Ep初2从能量转化的角度在所研究的过程中,研究对象(或系统)动能的增加量等于势能(包括重力势能和弹性势能)的减少量;反之,研究对象(或系统)动能的减少量等于势能的增加量,即 。系统的动能和势能发生相互转化时,若系统势能的减少量等于系统动能的增加量,系统机械能守恒。即:Ep减
7、=Ek增情景3如图是一个半径为R的光滑固定圆柱体的横截面,一根轻绳两端各系一个质量均为m的小球A、B而处于静止状态,两球与圆心在同一个水平线上。在受到轻微的扰动后,B球下落,A球上升,求A球到达圆柱体的最高点时对柱面的压力。分析B球重力势能减少了,A 球重力势能增加了,则系统重力势能共减少了,由机械能守恒定律得:3从能量转移的角度系统某一部分机械能减少了多少,其它部分的机械能就增加了多少;反之亦然,可用 表示,这种表述形式适用于某一系统机械能守恒的表述。也可理解为系统内某一物体动能(或势能)减少了多少,该物体的势能(或动能)以及系统内其它物体的机械能就要增加多少。简单地说,在所研究的系统内,机
8、械能有减就有增,减少的量值应与增加的量值相等。系统中有A、B两个物体或更多物体,若A机械能的减少量等于B机械能的增加量,系统机械能守恒。EA减=EB增情景8如图所示,半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上。一根轻质长绳穿过两个小圆环,它的两端都系上质量为m的重物,忽略小圆环的大小。将两个小圆环固定在大圆环竖直对称轴的两侧=30的位置上。在两个小圆环间绳子的中点C处,挂上一个质量的重物,使两个小圆环间的绳子水平,然后无初速释放重物M。设绳子与大、小圆环间的摩擦均可忽略,求重物M下降的最大距离。分析重物先向下加速,然后向下减速,当重物速度为零时,下降的距离最大。此时
9、质量为m的重物速度也为零,根据系统机械能守恒,M机械能的减少量等于m机械能的增加量,设下降的最大距离为h 。 (另解h=0舍去)本题如果规定零势能面从守恒角度列式,就显得很不方便,也没有必要。以上三种表达式各有特点,在不同的情况下应选取合适的表达式灵活运用,不要拘泥于某一种,这样问题才能变得简单快捷。下面我们就具体问题来谈谈如何巧用机械能守恒定律解题。三、应用机械能守恒定律的三种类型1、单个物体与地球组成的系统研究单个物体与地球组成的系统机械能是否守恒,首先应对物体进行受力分析,分析各力的做功情况,若只有重力做功,其他力不做功或做功的代数和为零,则此系统机械能守恒。情景6质量相等的两个小球A、
10、B分别用悬线挂在等高的两点,A球的悬线比B球的悬线长,如图1所示。把两球的悬线均拉到水平后将小球无初速释放,则经最低点时(以悬点为零势能点),A球动能与B球动能相比如何,两者机械能相比如何?分析A球、B球在向下运动时,虽然受重力和绳子拉力,但拉力不做功,只有重力做功,因而机械能守恒。由于初始状态时两者机械能相等,因此到达最低点时,两球机械能仍相等。但A球在最低点时重力势能较小,所以A球的动能大。2、物体、弹簧与地球组成的系统物体、弹簧与地球组成的系统中,若只有物体的重力和弹簧的弹力做功,其他力不做功或做功的代数和为零,弹簧的弹性势能与物体机械能之间发生转化,则系统的机械能守恒。情景6如图2,轻
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械能 守恒 理解
限制150内