事件的相互独立性教学设计-高一下学期数学人教A版(2019)必修第二册.docx
《事件的相互独立性教学设计-高一下学期数学人教A版(2019)必修第二册.docx》由会员分享,可在线阅读,更多相关《事件的相互独立性教学设计-高一下学期数学人教A版(2019)必修第二册.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、10.2事件的相互独立性一、内容和内容解析内容:两个事件独立的直观意义、定义及其在古典概型的概率计算中的应用内容解析:本节课选自普通高中课程标准数学教科书-必修第二册(人教A版)第十章第2节的内容独立性是概率论的基本概念,与计算积事件的概率有关,可以简化计算,在选择性必修的独立性检验中、利用事件的独立性假定构造检验统计量,独立性的直观意义是“在随机试验中,事件A(或B)发生与否不影响事件B(或A)发生的概率,本质是P(AB)=P(A)P(B),教科书先通过实例呈现独立性的直观意义,在此基础上分析计算P(AB)与P(A),P(B)的关系,再抽象出两个事件相互独立的定义.互斥事件与相互独立的事件的
2、内涵是不同的.事件A与B五斥是指事件A与B不能在任一随机试验中同时发生,其实质为AB=、P(AB)=0.因此,当事件A和B的概率都大于0时,如果事件A和B互斥,则和B一定不相互独立:反之,如果事件A和B相互独立,则A和B一定不互斥.不可能事件和必然事件是互斥事件,同时它们也是相互独立的事件,并且不可能事件、必然事件与任何事件A是相互独立的.二、目标和目标解析目标:(1)结合有限样本空间,了解两个随机事件相互独立的含义.(2)结合古典概型、利用事件的独立性计算概率. 目标解析:(1)两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响,不仅要直观感受到两个事件互不影响,
3、还要能够用解析式来说明因此,在归纳概括事件的相互独立的过程中,一定要用好具体的实例模型 (2)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实在事件的相互独立性的教学中,从具体的实例中归纳概括相互独立事件的概念是进行数学抽象教学的很好机会;同时利用事件的独立性解决具体的实际问题,也是进行数学建模教学的好机会基于上述分析,本节课的教学重点定为:了解两个事件相互独立的含义,利用事件的独立性解决有关概率计算问题.三、教学问题诊断分析1教学问题一:对两个事件的包含、相等、互斥、互相对立意义的描述,均不涉及事件的概率.而两个事件的相互独立性,需要借助事件的概率来刻画.大多数
4、学生一般倾向于认为连续发生的事件总是有联系的,不仅如此,他们在决策时通常会受到之前发生的事件的结果的影响.例如,对于问题“连续抛掷一枚均匀的硬币,如果前4次的结果都是反面朝上,那么第5次最可能的结果是什么?”一些学生会回答“最有可能是正面”(或者回答“最有可能是反面”).学生的决策可能受到“代表性启发式”(当应用这种策略解决不确定情境的问题时,倾向于预测那些最能体现证据代表性的结果)错误概念的影响,这种错误概念会导致忽视事件之间的独立性.教学中,在给出独立性的数学形式定义之前,教师应首先选择符合独立性直观意义的例子,促进学生直观地认识,并结合实例使学生进一步明晰随机试验的意义2教学问题二:学生
5、的另一个错误的认知是,相互独立的事件不能同时发生,这导致他们经常把独立事件与互斥事件混淆.事件的独立性与互斥性是两对不同属性的概念,事件A与B相互独立是从概率的角度来下的定义,其本质是P(AB)=P(A)P(B),强调一个事件的发生与否对另一个事件发生的概率大小没有影响,而事件A与B互斥是从事件运算的角度来下的定义,其内涵是.强调的是两个事件不能在任一随机试验中同时发生基于上述情况,本节课的教学难点定为:有关独立事件发生的概率计算四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示为了让学生通过观察、归纳得到两个事件相互独立,应该为学生创造积极探究的平台因此,在教学过程中使用
6、具体的实例,既可以帮助学生理解概念也可以让学生从被动学习状态转到主动学习状态中来在教学设计中,采取问题引导方式来组织课堂教学问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点在教学过程中,重视事件相互独立的判断,让学生体会判断事件相互独立的基本方法,同时,应用事件的对立性解决问题其实就是数学模型的建立与应用的典范因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试五、教学过程与设计教学环节问题或任务师生活动设计意图创设情境,引入新知问题1 分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币反面朝上”.事件A
7、发生与否会影响事件B发生的概率吗?问题2 分别计算P(A),P(B),P(AB),看看它们之间有什么关系?问题3 一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异.采用有放回方式从袋中依次任意摸出两球.设A=“第一次摸到球的标号小于3”,B=“第二次摸到球的标号小于3”.事件A发生与否会影响事件B发生的概率吗?问题4 分别计算P(A),P(B),P(AB),看看它们之间有什么关系?教师1: 提出问题1学生1:学生思考,不影响教师2:提出问题2 学生2:用1表示硬币“正面朝上”,用0表示硬币“反面朝上”,则样本空间为=(1,1),(1,0),(0,1),(0,0),包含4个等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学精品资料 新高考数学精品专题 高考数学压轴冲刺 高中数学课件 高中数学学案 高一高二数学试卷 数学模拟试卷 高考数学解题指导
限制150内